

Backend.AI Documentation

Latest API version: v3.20170615 (beta)

Backend.AI is a hassle-free backend for AI programming and service.
It runs arbitrary user codes safely in resource-constrained environments, using Docker and our own sandbox wrapper.

Backend.AI supports various programming languages and runtimes, such as Python 2/3, R, PHP, C/C++, Java, Javascript, Julia, Octave, Haskell, Lua and NodeJS, as well as AI-oriented libraries such as TensorFlow, Keras, Caffe, and MXNet.

FAQ

vs. Notebooks

	Product

	Role

	Problem and Solution

	Apache Zeppelin, Jupyter Notebook

	Notebook-style document + code front-ends

	Insecure host resource sharing

	Backend.AI

	Pluggable back-end to any front-ends

	Built for multi-tenancy: scalable and better isolation

vs. Orchestration Frameworks

	Product

	Target

	Value

	Amazon ECS, Kubernetes

	Long-running service daemons

	Load balancing, fault tolerance, incremental deployment

	Backend.AI

	Stateful compute sessions

	Low-cost high-density computation

	Amazon Lambda

	Stateless, light-weight functions

	Serverless, zero-management

vs. Big-data and AI Frameworks

	Product

	Role

	Problem and Solution

	TensorFlow, Apache Spark, Apache Hive

	Computation runtime

	Difficult to install, configure, and operate

	Amazon ML, Azure ML, GCP ML

	Managed MLaaS

	Still complicated for scientists, too restrictive for engineers

	Backend.AI

	Host of computation runtimes

	Pre-configured, versioned, reproducible, customizable (open-source)

(All product names and trade-marks are the properties of their respective owners.)

Table of Contents

User Manuals

	API Overview

	Python Client Library

Cluster Installation

	Overview

	Demo Setup

	Development Setup

API Common Reference

	API and Document Conventions

	Authentication

	Rate Limiting

	JSON Object References

User API Reference

	Introduction

	Kernel Management

	Code Execution (Query Mode)

	Code Exectuion and Monitoring (Streaming Mode)

	Code Execution (Batch Mode)

	Virtual Folders

Admin API Reference

	Introduction

	KeyPair Management

	Compute Session Monitoring

	Virtual Folder Management

	Statistics

Developer Manuals

	Development Setup

	Adding New REPL Kernels

Indices and tables

	Index

	Module Index

	Search Page

API Overview

Backend.AI API v3 consists of two parts: User APIs and Admin APIs.

Warning

APIv3 breaks backward compatibility a lot, and we will primarily support v3 after June 2017.
Please upgrade your clients immediately.

API KeyPair Registration

For managed, best-experience service, you may register to our cloud version of Backend.AI API service instead of installing it to your own machines.
Simply create an account at cloud.backend.ai [https://cloud.backend.ai] and generate a new API keypair.
You may also use social accounts for log-ins such as Twitter, Facebook, and GitHub.

An API keypair is composed of a 20-characters access key (AKIA...) and a 40-characters secret key, in a similar form to AWS access keys.

Currently, the service is BETA: it is free of charge but each user is limited to have only one keypair and have up to 5 concurrent kernel sessions for a given keypair.
Keep you eyes on further announcements for upgraded paid plans.

Accessing Admin APIs

The admin APIs require a special keypair with the admin privilege:

	The public cloud service (api.backend.ai): It currently does not offer any admin privileges to the end-users, as its functionality is already available via our management console at cloud.backend.ai [https://cloud.backend.ai].

	On-premise installation: You will get an auto-generated admin keypair during installation.

Python Client Library

We provide an official Python client library that abstracts the low-level HTTP REST APIs via a function-based interface.

Requirements

Python 3.6 or higher is required.
You can download its official installer from python.org [https://www.python.org/downloads/], or use a 3rd-party package/version manager such as homebrew [http://brew.sh/index_ko.html], miniconda [http://conda.pydata.org/miniconda.html], or pyenv [https://github.com/yyuu/pyenv].
It works on Linux, macOS, and Windows.

Installation

We recommend to create a virtual environment for isolated, unobtrusive installation of the library.

$ python3 -m venv venv-backend-ai
$ source venv-backend-ai/bin/activate
(venv-backend-ai) $

Then install the client library from PyPI.

(venv-backend-ai) $ pip install -U pip wheel setuptools
(venv-backend-ai) $ pip install sorna-client

Configuration

Set your API keypair as environment variables:

(venv-backend-ai) $ export BACKEND_ACCESS_KEY=AKIA...
(venv-backend-ai) $ export BACKEND_SECRET_KEY=...

The run Python in the virtual environment and check if your credentials are valid:

>>> from sorna.request import Request
>>> request = Request('GET', '/authorize', {'echo': 'test'})
>>> request.sign()
>>> response = request.send()
>>> response.status
200
>>> response.json()
{'authorized': 'yes', 'echo': 'test'}

Overview

Welcome to the Backend.AI Installation!

Guides

Server Installation Guides

	Server Concepts – Key concepts to know before diving into the installation process

	Install on Clouds – How to install a working cluster on public IaaS clouds

	Install on Premise – How to install a working cluster on your server farm

	Development Setup – How to install all components as editable packages on your PC

	Demo Setup – docker-compose up -d and that’s all!

Supplemental Guides

	Install Docker – How to install docker

	Install Python via pyenv – Install pyenv to install multiple Python versions side-by-side

	Install Monitoring and Logging Tools – Add third-party monitoring and logging tools (optional)

	Prepare Databases for Manager – Prepare database for complex manager managements and tasks

	Install CUDA – Install CUDA to use Nvidia GPUs

Developer Guides

	Version Management and Upgrades

Demo Setup

This meta-repository [https://github.com/lablup/backend.ai] provides a docker-compose configuration to fire up a single-node Backend.AI cluster running on your PC (http://localhost:8081).

Prerequisites

	All: install Docker 17.06 or later [https://docs.docker.com/install/] with docker-compose v1.21 or later [https://docs.docker.com/compose/install/]

	Linux users: change “docker.for.mac.localhost” in docker-compose.yml to “172.17.0.1”

Notes

	This demo setup does not support GPUs.

All you have to do

	Clone the repository

	Check out the prerequisites above

	docker-compose up -d

	For Windows, docker-compose -f docker-compose.win-demo.yml up -d

	Pull some kernel images to try out

Pulling kernel images

Pull the images on your host Docker daemon like:

$ docker pull lablup/kernel-python:latest
$ docker pull lablup/kernel-python-tensorflow:latest-dense
$ docker pull lablup/kernel-c:latest

By default this demo cluster already has metadata/alias information for all publicly available Backend.AI kernels [https://github.com/lablup/backend.ai-kernels], so you don’t have to manually register the pulled kernel information to the cluster but only have to pull those you want to try out.

Using Clients

To access this local cluster, set the following configurations to your favoriate Backend.AI client:

$ export BACKEND_ENDPOINT="http://localhost:8081"
$ export BACKEND_ACCESS_KEY="AKIAIOSFODNN7EXAMPLE"
$ export BACKEND_SECRET_KEY="wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY"

With our official Python client [http://pypi.python.org/pypi/backend.ai-client], you can do:

$ backend.ai run python -c "print('hello world')"
✔ Session 9c737d84724173354fa10445d0b35fe0 is ready.
hello world
✔ Finished. (exit code = 0)

$ backend.ai run python-tensorflow:latest-dense -c "import tensorflow as tf; print(tf.__version__)"
✔ Session 950713741d5ed43a191704f2cd375ff0 is ready.
1.5.0
✔ Finished. (exit code = 0)

WARNING: This demo configuration is highly insecure. DO NOT USE in production!

FAQ

	When launching a kernel, it says “Service Unavailable”!

	Each image has different default resource requirements and your Docker daemon may have a too small amount of resources. For example, TensorFlow images require 8 GiB or more RAM for your Docker daemon.

	Or, you might have launched 30 kernel sessions already, which is the default limit for this demo setup.

	What does the “dense” tag mean in the TensorFlow kernel images?

	Images with “dense” tags are optimized for shared multi-tenancy environments. There is no difference in functionalities.

Development Setup

Currently Backend.AI is developed and tested under only *NIX-compatible platforms (Linux or macOS).

Method 1: Automatic Installation

For the ease of on-boarding developer experience, we provide an automated
script that installs all server-side components in editable states with just
one command.

Prerequisites

Install the followings accordingly to your host operating system.

	pyenv [https://github.com/pyenv/pyenv] and pyenv-virtualenv [https://github.com/pyenv/pyenv-virtualenv]

	docker [https://docs.docker.com/install/]

	docker-compose [https://docs.docker.com/compose/install/]

Note

In some cases, locale conflicts between the terminal client and the remote host
may cause encoding errors when installing Backend.AI components due to Unicode characters
in README files. Please keep correct locale configurations to prevent such errors.

Warning

In macOS, Homebrew offers its own pyenv and pyenv-virtualenv packages but we do
not recommend using them! Updating those packages and cleaning up via
Homebrew will break your virtual environments as each version uses different
physical directories.

Our installer script will try to install pyenv automatically if not installed,
but we do recommend installing them by yourself as it may interfere with your
shell configurations.

Running the script

$ wget https://raw.githubusercontent.com/lablup/backend.ai/master/scripts/install-dev.sh
$ chmod +x ./install-dev.sh
$./install-dev.sh

Note

The script may ask your root password in the middle to run sudo in Linux.

This installs a set of Backend.AI server-side components in the
backend.ai-dev directory under the current working directory.

Inside the directory, there are manager, agent, common and a few
other auxiliary directories. You can directly modify the source codes inside
them and re-launch the gateway and agent. The common directory is shared
by manager and agent so just editing sources there takes effects in the
next launches of the gateway and agent.

At the end of execution, the script will show several command examples about
launching the gateway and agent. It also displays a unique random key called
“environment ID” to distinguish a particular execution of this script so that
repeated execution does not corrupt your existing setups.

By default, the script pulls the docker images for our standard Python kernel and
TensorFlow CPU-only kernel. To try out other images, you have to pull them
manually afterwards.

The script provides a set of command-line options. Check out them using -h
/ --help option.

Note

To install multiple instances of development environments using this script,
you need to run the script at different working directories because
the backend.ai-dev directory name is fixed.

Also, you cannot run multiple gateways and agents from different environments
at the same time because docker container in different environments use the
same TCP ports of the host system. Use docker-compose command to stop
the current environment and start another to switch between environments.
Please do not forget to specify -p <ENVID> option to docker-compose
commands to distinguish different environments.

Resetting the environment

$ wget https://raw.githubusercontent.com/lablup/backend.ai/master/scripts/delete-dev.sh
$ chmod +x ./delete-dev.sh
$./delete-dev.sh --env <ENVID>

Note

The script may ask your root password in the middle to run sudo in Linux.

This will purge all docker resources related to the given environment ID and
the backend.ai-dev directory under the current working directory.

The script provides a set of command-line options. Check out them using -h
/ --help option.

Warning

Be aware that this script force-removes, without any warning, all contents
of the backend.ai-dev directory, which may contain your own
modifications that is not yet pushed to a remote git repository.

Method 2: Manual Installation

Requirement packages

	PostgreSQL: 9.6

	etcd: v3.3.9

	redis: latest

Prepare containers for external daemons

First install an appropriate version of Docker (later than 2017.03 version) and docker-compose (later than 1.21).
Check out the Install Docker guide.

Note

In this guide, $WORKSPACE means the absolute path to an arbitrary working directory in your system.

To copy-and-paste commands in this guide, set WORKSPACE environment variable.

The directory structure would look like after finishing this guide:

	
	$WORKSPACE

	
	backend.ai

	backend.ai-manager

	backend.ai-agent

	backend.ai-common

	backend.ai-client-py

$ cd $WORKSPACE
$ git clone https://github.com/lablup/backend.ai
$ cd backend.ai
$ docker-compose -f docker-compose.halfstack.yml up -d
$ docker ps # you should see 3 containers running

[image: asciicast]
 [https://asciinema.org/a/Q2Y3JuwqYoJjG9RB64Ovcpal2]This will create and start PostgreSQL, Redis, and a single-instance etcd containers.
Note that PostgreSQL and Redis uses non-default ports by default (5442 and 6389 instead of 5432 and 6379)
to prevent conflicts with other application development environments.

Prepare Python 3.6+

Check out Install Python via pyenv for instructions.

Create the following virtualenvs: venv-manager, venv-agent, venv-common, and venv-client.

[image: asciicast]
 [https://asciinema.org/a/xcMY9g5iATrCchoziCbErwgbG]

Prepare dependent libraries

Install snappy (brew on macOS), libsnappy-dev (Debian-likes), or libsnappy-devel (RHEL-likes) system package depending on your environment.

Prepare server-side source clones

[image: asciicast]
 [https://asciinema.org/a/SKJv19aNu9XKiCTOF0ASXibDq]Clone the Backend.AI source codes.

$ cd $WORKSPACE
$ git clone https://github.com/lablup/backend.ai-manager
$ git clone https://github.com/lablup/backend.ai-agent
$ git clone https://github.com/lablup/backend.ai-common

Inside each directory, install the sources as editable packages.

Note

Editable packages makes Python to apply any changes of the source code in git clones immediately when importing the installed packages.

$ cd $WORKSPACE/backend.ai-manager
$ pyenv local venv-manager
$ pip install -U -r requirements-dev.txt

$ cd $WORKSPACE/backend.ai-agent
$ pyenv local venv-agent
$ pip install -U -r requirements-dev.txt

$ cd $WORKSPACE/backend.ai-common
$ pyenv local venv-common
$ pip install -U -r requirements-dev.txt

(Optional) Symlink backend.ai-common in the manager and agent directories to the cloned source

If you do this, your changes in the source code of the backend.ai-common directory will be reflected immediately to the manager and agent.
You should install backend.ai-common dependencies into venv-manager and venv-agent as well, but this is already done in the previous step.

$ cd "$(pyenv prefix venv-manager)/src"
$ mv backend.ai-common backend.ai-common-backup
$ ln -s "$WORKSPACE/backend.ai-common" backend.ai-common

$ cd "$(pyenv prefix venv-agent)/src"
$ mv backend.ai-common backend.ai-common-backup
$ ln -s "$WORKSPACE/backend.ai-common" backend.ai-common

Initialize databases and load fixtures

Check out the Prepare Databases for Manager guide.

Prepare Kernel Images

You need to pull the kernel container images first to actually spawn compute sessions.

 API and Document Conventions

API and Document Conventions

HTTP Methods

We use the standard HTTP/1.1 methods (RFC-2616 [https://tools.ietf.org/html/rfc2616]), such as GET, POST, PUT, PATCH and DELETE, with some additions from WebDAV (RFC-3253 [https://tools.ietf.org/html/rfc3253]) such as REPORT method to send JSON objects in request bodies with GET semantics.

If your client runs under a restrictive environment that only allows a subset of above methods, you may use the universal POST method with an extra HTTP header like X-Method-Override: REPORT, so that the Backend.AI gateway can recognize the intended HTTP method.

Parameters in URI and JSON Request Body

The parameters with colon prefixes (e.g., :id) are part of the URI path and must be encoded using a proper URI-compatible encoding schemes such as encodeURIComponent(value) in Javascript and urllib.parse.quote(value, safe='~()*!.\'') in Python 3+.

Other parameters should be set as a key-value pair of the JSON object in the HTTP request body.
The API server accepts both UTF-8 encoded bytes and standard-compliant Unicode-escaped strings in the body.

HTTP Status Codes and JSON Response Body

The API responses always contain a root JSON object, regardless of success or failures.

For successful responses (HTTP status 2xx), the root object has a varying set of key-value pairs depending on the API.

For failures (HTTP status 4xx/5xx), the root object contains at least two keys: type which uniquely identifies the failure reason as an URI and title for human-readable error messages.
Some failures may return extra structured information as additional key-value pairs.
We use RFC 7807 [https://tools.ietf.org/html/rfc7807]-style problem detail description returned in JSON of the response body.

JSON Field Notation

Dot-separated field names means a nested object.
If the field name is a pure integer, it means a list item.

	Example

	Meaning

	a

	The attribute a of the root object.
(e.g., 123 at {"a": 123})

	a.b

	The attribute b of the object a on the root.
(e.g., 456 at {"a": {"b": 456}})

	a.0

	An item in the list a on the root.
0 means an arbitrary array index, not the specific item at index zero.
(e.g., any of 13, 57, 24, and 68 at {"a": [13, 57, 24, 68]})

	a.0.b

	The attribute b of an item in the list a on the root.
(e.g., any of 1, 2, and 3 at {"a": [{"b": 1}, {"b": 2}, {"b": 3}]})

JSON Value Types

This documentation uses a type annotation style similar to Python’s typing module [https://docs.python.org/3/library/typing.html], but with minor intuitive differences such as lower-cased generic type names and wildcard as asterisk * instead of Any.

The common types are array (JSON array), object (JSON object), int (integer-only subset of JSON number), str (JSON string), and bool (JSON true or false).
tuple and list are aliases to array.
Optional values may be omitted or set to null.

We also define several custom types:

	Type

	Description

	decimal

	Fractional numbers represented as str not to loose precision. (e.g., to express money amounts)

	slug

	Similar to str, but the values should contain only alpha-numeric characters, hyphens, and underscores.
Also, hyphens and underscores should have at least one alphanumeric neighbor as well as cannot become the prefix or suffix.

	datetime

	ISO-8601 timestamps in str, e.g., "YYY-mm-ddTHH:MM:SS.ffffff+HH:MM".
It may include an optional timezone information. If timezone is not included, the value is assumed to be UTC.
The sub-seconds parts has at most 6 digits (micro-seconds).

	enum[*]

	Only allows a fixed/predefined set of possible values in the given parametrized type.

API Versioning

A version string of the Backend.AI API uses two parts: a major revision (prefixed with v) and minor release dates after a dot following the major revision.
For example, v23.20250101 indicates a 23rd major revision with a minor release at January 1st in 2025.

We keep backward compatibility between minor releases within the same major version.
Therefore, all API query URLs are prefixed with the major revision, such as /v2/kernel/create.
Minor releases may introduce new parameters and response fields but no URL changes.
Accessing unsupported major revision returns HTTP 404 Not Found.

A client must specify the API version in the HTTP request header named X-BackendAI-Version.
To check the latest minor release date of a specific major revision, try a GET query to the URL with only the major revision part (e.g., /v2).
The API server will return a JSON string in the response body containing the full version.
When querying the API version, you do not have to specify the authorization header and the rate-limiting is enforced per the client IP address.
Check out more details about Authentication and Rate Limiting.

Example version check response body:

{
 "version": "v2.20170315"
}

 Authentication

Authentication

Access Tokens and Secret Key

To make requests to the API server, a client needs to get a pair of an access token and a secret key as sepcified in /gsg/registration.
The server uses access tokens to identify each client and secret keys to verify integrity of API requests as well as to authenticate clients.

Warning

For security reasons (to avoid exposition of your API access key and secret keys to arbitrary
Internet users), we highly recommend to setup a server-side proxy to our API
service if you are building a public-facing front-end service using Backend.AI.

For local deployments, you may create a master dummy pair in the configuration (TODO).

Common Structure of API Requests

	HTTP Headers

	Values

	Method

	GET / REPORT / POST / PUT / PATCH / DELETE

	Content-Type

	Always should be application/json

	Authorization

	Signature information generated as the section Signing API Requests describes.

	Date

	The date/time of the request formatted in RFC 8022 or ISO 8601.
If no timezone is specified, UTC is assumed.
The deviation with the server-side clock must be within 15-minutes.

	X-BackendAI-Date

	Same as Date. May be omitted if Date is present.

	X-BackendAI-Version

	vX.yyymmdd where X is the major version and
yyyymmdd is the minor release date of the specified API version.
(e.g., 20160915)

	X-BackendAI-Client-Token

	An optional, client-generated random string to allow the server to distinguish repeated duplicate requests.
It is important to keep idempotent semantics with multiple retries for intermittent failures.
(Not implemented yet)

	Body

	JSON-encoded request parameters

Common Structure of API Responses

	HTTP Headers

	Values

	Status code

	API-specific HTTP-standard status codes. Responses commonly used throughout all APIs include 200, 201, 2014, 400, 401, 403, 404, 429, and 500, but not limited to.

	Content-Type

	application/json and its variants (e.g., application/problem+json for errors)

	Link

	Web link headers specified as in RFC 5988 [https://tools.ietf.org/html/rfc5988]. Only optionally used when returning a collection of objects.

	X-RateLimit-*

	The rate-limiting information (see Rate Limiting).

	Body

	JSON-encoded results

Signing API Requests

Each API request must be signed with a signature.
First, the client should generate a signing key derived from its API secret key and a string to sign by canonicalizing the HTTP request.

Generating a signing key

Here is a Python code that derives the signing key from the secret key.
The key is nestedly signed against the current date (without time) and the API endpoint address.

import hashlib, hmac
from datetime import datetime

SECRET_KEY = b'abc...'

def sign(key, msg):
 return hmac.new(key, msg, hashlib.sha256).digest()

def get_sign_key():
 t = datetime.utcnow()
 k1 = sign(SECRET_KEY, t.strftime('%Y%m%d').encode('utf8'))
 k2 = sign(k1, b'your.sorna.api.endpoint')
 return k2

Generating a string to sign

The string to sign is generated from the following request-related values:

	HTTP Method (uppercase)

	URI including query strings

	The value of Date (or X-BackendAI-Date if Date is not present) formatted in ISO 8601 (YYYYmmddTHHMMSSZ) using the UTC timezone.

	The canonicalized header/value pair of Host

	The canonicalized header/value pair of Content-Type

	The canonicalized header/value pair of X-BackendAI-Version

	The hex-encoded hash value of body as-is. The hash function must be same to the one given in the Authorization header (e.g., SHA256).

To generate a string to sign, the client should join the above values using the newline ("\n", ASCII 10) character.
All non-ASCII strings must be encoded with UTF-8.
To canonicalize a pair of HTTP header/value, first trim all leading/trailing whitespace characters ("\n", "\r", " ", "\t"; or ASCII 10, 13, 32, 9) of its value, and join the lowercased header name and the value with a single colon (":", ASCII 58) character.

The success example in Example Requests and Responses makes a string to sign as follows (where the newlines are "\n"):

GET
/v2
20160930T01:23:45Z
host:your.sorna.api.endpoint
content-type:application/json
x-sorna-version:v2.20170215
e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

In this example, the hash value e3b0c4... is generated from an empty string using the SHA256 hash function since there is no body for GET requests.

Then, the client should calculate the signature using the derived signing key and the generated string with the hash function, as follows:

import hashlib, hmac

str_to_sign = 'GET\n/v2...'
sign_key = get_sign_key() # see "Generating a signing key"
m = hmac.new(sign_key, str_to_sign.encode('utf8'), hashlib.sha256)
signature = m.hexdigest()

Attaching the signature

Finally, the client now should construct the following HTTP Authorization header:

Authorization: BackendAI signMethod=HMAC-SHA256, credential=<access-key>:<signature>

Example Requests and Responses

For the examples here, we use a dummy access key and secret key:

	Example access key: AKIAIOSFODNN7EXAMPLE

	Example secret key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Success example for checking the latest API version

GET /v2 HTTP/1.1
Host: your.sorna.api.endpoint
Date: 20160930T01:23:45Z
Authorization: BackendAI signMethod=HMAC-SHA256, credential=AKIAIOSFODNN7EXAMPLE:022ae894b4ecce097bea6eca9a97c41cd17e8aff545800cd696112cc387059cf
Content-Type: application/json
X-BackendAI-Version: v2.20170215

HTTP/1.1 200 OK
Content-Type: application/json
Content-Language: en
Content-Length: 31
X-RateLimit-Limit: 2000
X-RateLimit-Remaining: 1999
X-RateLimit-Reset: 897065

{
 "version": "v2.20170215"
}

Failure example with a missing authorization header

GET /v2/kernel/create HTTP/1.1
Host: your.sorna.api.endpoint
Content-Type: application/json
X-BackendAI-Date: 20160930T01:23:45Z
X-BackendAI-Version: v2.20170215

HTTP/1.1 401 Unauthorized
Content-Type: application/problem+json
Content-Language: en
Content-Length: 139
X-RateLimit-Limit: 2000
X-RateLimit-Remaining: 1998
X-RateLimit-Reset: 834821

{
 "type": "https://sorna.io/problems/unauthorized",
 "title": "Unauthorized access",
 "detail": "Authorization header is missing."
}

 Rate Limiting

Rate Limiting

The API server imposes a rate limit to prevent clients from overloading the server.
The limit is applied to the last N minutes at ANY moment (N is 15 minutes by default).

For public non-authorized APIs such as version checks, the server uses the client’s IP address seen by the server to impose rate limits.
Due to this, please keep in mind that large-scale NAT-based deployments may encounter the rate limits sooner than expected.
For authorized APIs, it uses the access key in the authorization header to impose rate limits.
The rate limit includes both all successful and failed requests.

Upon a valid request, the HTTP response contains the following header fields to help the clients flow-control their requests.

	HTTP Headers

	Values

	X-RateLimit-Limit

	The maximum allowed number of requests during the rate-limit window.

	X-RateLimit-Remaining

	The number of further allowed requests left for the moment.

	X-RateLimit-Window

	The constant value representing the window size in seconds.
(e.g., 900 means 15 minutes)

Changed in version v3.20170615: Deprecated X-RateLimit-Reset and transitional X-Retry-After as we have implemented a rolling counter that measures last 15 minutes API call counts at any moment.

When the limit is exceeded, further API calls will get HTTP 429 “Too Many Requests”.
If the client seems to be DDoS-ing, the server may block the client forever without prior notice.

 JSON Object References

JSON Object References

Paging Query Object

It describes how many items to fetch for object listing APIs.
If index exceeds the number of pages calculated by the server, an empty list is returned.

	Key

	Type

	Description

	size

	int

	The number of items per page.
If set zero or this object is entirely omitted, all items are returned and index is ignored.

	index

	int

	The page number to show, zero-based.

Paging Info Object

It contains the paging information based on the paging query object in the request.

	Key

	Type

	Description

	pages

	int

	The number of total pages.

	count

	int

	The number of all items.

KeyPair Item Object

	Key

	Type

	Description

	accessKey

	slug

	The access key part.

	isActive

	bool

	Indicates if the keypair is active or not.

	totalQueries

	int

	The number of queries done via this keypair. It may have a stale value.

	created

	datetime

	The timestamp when the keypair was created.

KeyPair Properties Object

	Key

	Type

	Description

	isActive

	bool

	Indicates if the keypair is activated or not.
If not activated, all authentication using the keypair returns 401 Unauthorized.
When changed from true to false, existing running kernel sessions continue to run but any requests to create new kernel sessions are refused.
(default: true)

	concurrecy

	int

	The maximum number of concurrent kernel sessions allowed for this keypair.
(default: 5)

	ML.clusterSize

	int

	Sets the number of instances clustered together when launching new machine learning kernel sessions. (default: 1)

	ML.instanceMemory

	int (MiB)

	Sets the memory limit of each instance in the cluster launched for new machine learning kernel sessions. (default: 8)

The enterprise edition offers the following additional properties:

	Key

	Type

	Description

	cost.automatic

	bool

	If set true, enables automatic cost optimization (BETA).
With supported kernel types, it automatically suspends or resize the kernel sessions not to exceed the configured cost limit per day.
(default: false)

	cost.dailyLimit

	str

	The string representation of money amount as decimals.
The currency is fixed to USD. (default: "50.00")

Batch Execution Query Object

	Key

	Type

	Description

	build

	str

	The bash command to build the main program from the given uploaded files.

If this field is not present, an empty string or null, it skips the build step.

If this field is a constant string "*", it will use a default build script provided
by the kernel.
For example, the C kernel’s default Makefile adds all C source files
under the working directory and copmiles them into ./main
executable, with commonly used C/link flags: "-pthread -lm -lrt -ldl".

	exec

	str

	The bash command to execute the main program.

If this is not present, an empty string, or null, the server only
performs the build step and options.buildLog is assumed to be
true (the given value is ignored).

Note

A client can distinguish whether the current output is from the build phase
or the execution phase by whether it has received build-finished status
or not.

Note

All shell commands are by default executed under /home/work.
The common environment is:

TERM=xterm
LANG=C.UTF-8
SHELL=/bin/bash
USER=work
HOME=/home/work

but individual kernels may have additional environment settings.

Warning

The shell does NOT have access to sudo or the root privilege.
Though, some kernels may allow installation of language-specific packages in
the user directory.

Also, your build script and the main program is executed inside
Backend.AI Jail, meaning that some system calls are blocked by our policy.
Since ptrace syscall is blocked, you cannot use native debuggers
such as gdb.

This limitation, however, is subject to change in the future.

Example:

{
 "build": "gcc -Wall main.c -o main -lrt -lz",
 "exec": "./main"
}

Execution Result Object

	Key

	Type

	Description

	runId

	str

	The user-provided run identifier.
If the user has NOT provided it, this will be set by the API server upon the first execute API call.
In that case, the client should use it for the subsequent execute API calls during the same run.

	status

	enum[str]

	One of "continued", "waiting-input", "finished", or "build-finished".
See more details at Code Execution Model.

	exitCode

	int | null

	The exit code of the last process.
This field has a valid value only when the status is "finished" or "build-finished".
Otherwise it is set to null.

For batch-mode kernels and query-mode kernels without global context support,
exitCode is the return code of the last executed child process in the kernel.
In the execution step of a batch mode run, this is always 127 (a UNIX shell common practice for “command not found”)
when the build step has failed.

For query-mode kernels with global context support, this value is always zero,
regardless of whether the user code has caused an exception or not.

A negative value (which cannot happen with normal process termination) indicates a Backend.AI-side error.

	console

	list[
 tuple[
 enum[str], *
]
]

	Contains a list of console output items.
Each item is a pair of the item type (enum[str]) and its value (*).
See more details at Handling Console Output.

	options

	object

	An object containing extra display options. If there is no options indicated by the kernel, this field is null.
When result.status is "waiting-input", it has a boolean field is_password so that you could use
different types of text boxes for user inputs.

Kernel Session Item Object

	Key

	Type

	Description

	id

	slug

	The kernel session ID.

	type

	str

	The kernel type (typically the name of runtime or programming lanauge).

	status

	enum[str]

	One of "preparing", "building”, "running", "restarting", "resizing", "success", "error", "terminating", "suspended".

	statusInfo

	str

	An optional message related to the current status. (e.g., error information)

	age

	int (msec)

	The time elapsed since the kernel has started.

	execTime

	int (msec)

	The time taken for execution. Excludes the time taken for being suspended, restarting, and resizing.

	numQueriesExecuted

	int

	The total number of queries executed after start-up.

	memoryUsed

	int (MiB)

	The amount of memory currently used (sum of all resident-set size across instances). It may show a stale value.

	cpuUtil

	int (%)

	The current CPU utilization (sum of all used cores across instances, hence may exceed 100%). It may show a stale value.

Changed in version v3.20170615: This had been separated into multiple credit-based fields, but that was never implemented properly.
We has changed it to represent more intuitive value.

	config

	object

	Creation Config Object specified when created.

Creation Config Object

	Key

	Type

	Description

	environ

	object

	A dictionary object specifying additional environment variables.
The values must be strings.

	mounts

	list[str]

	An optional list of the name of virtual folders that belongs to the current API key.
These virtual folders are mounted under /home/work.
For example, if the virtual folder name is abc, you can access it on
/home/work/abc.

If the name contains a colon in the middle, the second part of the string indicates
the alias location in the kernel’s file system which is relative to /home/work.

You may mount up to 5 folders for each kernel session.

	clusterSize

	int

	The number of instances bundled for this session.

	instanceMemory

	int (MiB)

	The maximum memory allowed per instance.
The value is capped by the per-kernel image limit.
Additional charges may apply on the public API service.

	instanceCores

	int

	The number of CPU cores.
The value is capped by the per-kernel image limit.
Additional charges may apply on the public API service.

	instanceGPUs

	float

	The fraction of GPU devices (1.0 means a whole device).
The value is capped by the per-kernel image limit.
Additional charges may apply on the public API service.

Virtual Folder Item Object

	Key

	Type

	Description

	name

	str

	The human readable name set when created.

	id

	slug

	The unique ID of the folder. Use this when making API requests referring this folder.

	linked

	bool

	Indicates if this folder is linked to an external service. (enterprise edition only)

	usedSize

	int (MiB)

	The sum of the size of files in this folder.

	numFiles

	int

	The number of files in this folder.

	maxSize

	int (MiB)

	The maximum size of this folder.

	created

	datetime

	The date and time when the folder is created.

 Introduction

Introduction

Backend.AI User API is for running instant compute sessions at scale in clouds or on-premise clusters.

Code Execution Model

The core of the user API is the execute call which allows clients to execute user-provided codes in isolated compute sessions (aka kernels).
Each session is managed by a kernel runtime, whose implementation is language-specific.
A runtime is often a containerized daemon that interacts with the Backend.AI agent via our internal ZeroMQ protocol.
In some cases, kernel runtimes may be just proxies to other code execution services instead of actual executor daemons.

Inside each compute session, a client may perform multiple runs.
Each run is for executing different code snippets (the query mode) or different sets of source files (the batch mode).
The client often has to call the execute API multiple times to finish a single run.
It is completely legal to mix query-mode runs and batch-mode runs inside the same session, given that the kernel runtime supports both modes.

To distinguish different runs which may be overlapped, the client must provide the same run ID to all execute calls during a single run.
The run ID should be unique for each run and can be an arbitrary random string.
If the run ID is not provided by the client at the first execute call of a run, the API server will assign a random one and inform it to the client via the first response.
Normally, if two or more runs are overlapped, they are processed in a FIFO order using an internal queue.
But they may be processed in parallel if the kernel runtime supports parallel processing.
Note that the API server may raise a timeout error and cancel the run if the waiting time exceeds a certain limit.

In the query mode, usually the runtime context (e.g., global variables) is preserved for next subsequent runs, but this is not guaranteed by the API itself—it’s up to the kernel runtime implementation.

[image: ../_images/run-state-diagram.svg]
Fig. 1 The state diagram of a “run” with the execute API.

The execute API accepts 4 arguments: mode, runId, code, and options (opts).
It returns an Execution Result Object encoded as JSON.

Depending on the value of status field in the returned Execution Result Object,
the client must perform another subsequent execute call with appropriate arguments or stop.
Fig. 1 shows all possible states and transitions between them via the status field value.

If status is "finished", the client should stop.

If status is "continued", the client should make another execute API call with the code field set to an empty string and the mode field set to "continue".
Continuation happens when the user code runs longer than a few seconds to allow the client to show its progress, or when it requires extra step to finish the run cycle.

If status is "build-finished" (this happens at the batch-mode only), the client should make the same continuation call.
All outputs prior to this status return are from the build program and all future outputs are from the executed program built.
Note that even when the exitCode value is non-zero (failed), the client must continue once again to complete the run cycle.

If status is "waiting-input", you should make another execute API call with the code field set to the user-input text and the mode field set to "input".
This happens when the user code calls interactive input() functions.
Until you send the user input, the current run is blocked.
You may use modal dialogs or other input forms (e.g., HTML input) to retrieve user inputs.
When the server receives the user input, the kernel’s input() returns the given value.
Note that each kernel runtime may provide different ways to trigger this interactive input cycle or may not provide at all.

When each call returns, the console field in the Execution Result Object have the console logs captured since the last previous call.
Check out the following section for details.

Handling Console Output

The console output consists of a list of tuple pairs of item type and item data.
The item type is one of "stdout", "stderr", "media", "html", or "log".

When the item type is "stdout" or "stderr", the item data is the standard I/O stream outputs as (non-escaped) UTF-8 string.
The total length of either streams is limited to 524,288 Unicode characters per each execute API call; all excessive outputs are truncated.
The stderr often includes language-specific tracebacks of (unhandled) exceptions or errors occurred in the user code.
If the user code generates a mixture of stdout and stderr, the print ordering is preserved and each contiguous block of stdout/stderr becomes a separate item in the console output list so that the client user can reconstruct the same console output by sequentially rendering the items.

Note

The text in the stdout/stderr item may contain arbitrary terminal control sequences such as ANSI color codes and cursor/line manipulations.
It is the user’s job to strip out them or implement some sort of terminal emulation.

Tip

Since the console texts are not escaped, the client user should take care of rendering and escaping depending on the UI implementation.
For example, use <pre> element, replace newlines with
, or apply white-space: pre CSS style when rendering as HTML.
An easy way to do escape the text safely is to use insertAdjacentText() DOM API.

When the item type is "media", the item data is a pair of the MIME type and the content data.
If the MIME type is text-based (e.g., "text/plain") or XML-based (e.g., "image/svg+xml"), the content is just a string that represent the content.
Otherwise, the data is encoded as a data URI format (RFC 2397).
You may use backend.ai-media library [https://github.com/lablup/backend.ai-media] to handle this field in Javascript on web-browsers.

When the item type is "html", the item data is a partial HTML document string, such as a table to show tabular data.
If you are implementing a web-based front-end, you may use it directly to the standard DOM API, for instance, consoleElem.insertAdjacentHTML(value, "beforeend").

When the item type is "log", the item data is a 4-tuple of the log level, the timestamp in the ISO 8601 format, the logger name and the log message string.
The log level may be one of "debug", "info", "warning", "error", or "fatal".
You may use different colors/formatting by the log level when printing the log message.
Not every kernel runtime supports this rich logging facility.

 Kernel Management

Kernel Management

Here are the API calls to create and manage compute sessions.

Creating Kernel Session

	URI: /v2/kernel/ (/v2/kernel/create also works for legacy)

	Method: POST

Creates a kernel session if there is no existing (running) kernel with the same clientSessionToken.
If there is an existing session and it has the same lang, no new session is created but the API returns successfully.
In this case, config options are ignored and the created field in the response is set false (otherwise it’s true).
If there is an existing session but with a different lang, then the API server returns an error.

Parameters

	Parameter

	Type

	Description

	lang

	str

	The kernel runtime type, usually in the form of the language name and its version tag connected with a colon.
(e.g., "python:latest")

	clientSessionToken

	str

	Client-provided session token which can contain ASCII alphabets, numbers, and hyphens in the middle.
The length must be between 4 to 64 characters inclusively.
It is useful for aliasing the session with a human-friendly name.
There can exist only one running session with the same token at a time, but you can reuse the same token if previous session has been terminated.

	config

	object

	An optional Creation Config Object to specify extra kernel
configuration.

Example:

{
 "lang": "python:3.6",
 "clientSessionToken": "EXAMPLE:STRING",
 "config": {
 "clusterSize": 1,
 "instanceMemory": 51240,
 "environ": {
 "MYCONFIG": "XXX",
 },
 "mounts": [
 "mydata",
 "mypkgs:.local/lib/python3.6/site-packages"
],
 }
}

Response

	HTTP Status Code

	Description

	201 Created

	The kernel is successfully created.

	406 Not acceptable

	The requested resource limits exceed the server’s own limits.

	Fields

	Type

	Values

	kernelId

	slug

	The kernel ID used for later API calls.

	created

	bool

	True if the kernel is freshly created.

Example:

{
 "kernelId": "TSSJT2Z4SnmQhxjWMnJljg",
 "created": true
}

Getting Kernel Information

	URI: /v2/kernel/:id

	Method: GET

Retrieves information about a kernel session.
For performance reasons, the returned information may not be real-time; usually
they are updated every a few seconds in the server-side.

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The kernel ID.

Response

	HTTP Status Code

	Description

	200 OK

	The information is successfully returned.

	404 Not Found

	There is no such kernel.

	Fields

	Type

	Values

	item

	object

	Kernel Session Item Object.

Destroying Kernel Session

	URI: /v2/kernel/:id

	Method: DELETE

Terminates a kernel session.

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The kernel ID.

Response

	HTTP Status Code

	Description

	204 No Content

	The kernel is successfully destroyed.

	404 Not Found

	There is no such kernel.

Restarting Kernel Session

	URI: /v2/kernel/:id

	Method: PATCH

Restarts a kernel session.
The idle time of the kernel will be reset, but other properties such as the age and CPU credit will continue to accumulate.
All global states such as global variables and modules imports are also reset.

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The kernel ID.

Response

	HTTP Status Code

	Description

	204 No Content

	The kernel is successfully restarted.

	404 Not Found

	There is no such kernel.

 Code Execution (Query Mode)

Code Execution (Query Mode)

Executing Snippet

	URI: /v2/kernel/:id

	Method: POST

Executes a snippet of user code using the specified kernel session.
Each execution request to a same kernel session may have side-effects to subsequent executions.
For instance, setting a global variable in a request and reading the variable in another request is completely legal.
It is the job of the user (or the front-end) to gaurantee the correct execution order of multiple interdependent requests.
When the kernel session is terminated or restarted, all such volatile states vanish.

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The kernel ID.

	mode

	str

	A constant string "query".

	code

	str

	A string of user-written code.
All non-ASCII data must be encoded in UTF-8 or any format acceptable by the kernel.

	runId

	str

	A string of client-side unique identifier for this particular run.
For more details about the concept of a run, see Code Execution Model.
If not given, the API server will assign a random one in the first response and the client must use it for the same run afterwards.

Example:

{
 "type": "query",
 "code": "print('Hello, world!')",
 "runId": "5facbf2f2697c1b7"
}

Response

	HTTP Status Code

	Description

	200 OK

	The kernel has responded with the execution result.
The response body contains a JSON object as described below.

	Fields

	Type

	Values

	result

	object

	Execution Result Object.

Note

Even when the user code raises exceptions, such queries are treated as successful execution.
i.e., The failure of this API means that our API subsystem had errors, not the user codes.

Warning

If the user code tries to breach the system, causes crashs (e.g., segmentation fault), or runs too long (timeout), the kernel session is automatically terminated.
In such cases, you will get incomplete console logs with "finished" status earlier than expected.
Depending on situation, the result.stderr may also contain specific error information.

Here we demonstrate a few example returns when various Python codes are executed.

Example: Simple return.

print("Hello, world!")

{
 "result": {
 "runId": "5facbf2f2697c1b7",
 "status": "finished",
 "console": [
 ["stdout", "Hello, world!\n"]
],
 "options": null
 }
}

Example: Runtime error.

a = 123
print('what happens now?')
a = a / 0

{
 "result": {
 "runId": "5facbf2f2697c1b7",
 "status": "finished",
 "console": [
 ["stdout", "what happens now?\n"],
 ["stderr", "Traceback (most recent call last):\n File \"<input>\", line 3, in <module>\nZeroDivisionError: division by zero"],
],
 "options": null
 }
}

Example: Multimedia output.

Media outputs are also mixed with other console outputs according to their execution order.

import matplotlib.pyplot as plt
a = [1,2]
b = [3,4]
print('plotting simple line graph')
plt.plot(a, b)
plt.show()
print('done')

{
 "result": {
 "runId": "5facbf2f2697c1b7",
 "status": "finished",
 "console": [
 ["stdout", "plotting simple line graph\n"],
 ["media", ["image/svg+xml", "<?xml version=\"1.0\" ..."]],
 ["stdout", "done\n"]
],
 "options": null
 }
}

Example: Continuation results.

import time
for i in range(5):
 print(f"Tick {i+1}")
 time.sleep(1)
print("done")

{
 "result": {
 "runId": "5facbf2f2697c1b7",
 "status": "continued",
 "console": [
 ["stdout", "Tick 1\nTick 2\n"]
],
 "options": null
 }
}

Here you should make another API query with the empty code field.

{
 "result": {
 "runId": "5facbf2f2697c1b7",
 "status": "continued",
 "console": [
 ["stdout", "Tick 3\nTick 4\n"]
],
 "options": null
 }
}

Again.

{
 "result": {
 "runId": "5facbf2f2697c1b7",
 "status": "finished",
 "console": [
 ["stdout", "Tick 5\ndone\n"],
],
 "options": null
 }
}

Example: User input.

print("What is your name?")
name = input(">> ")
print(f"Hello, {name}!")

{
 "result": {
 "runId": "5facbf2f2697c1b7",
 "status": "waiting-input",
 "console": [
 ["stdout", "What is your name?\n>> "]
],
 "options": {
 "is_password": false
 }
 }
}

You should make another API query with the code field filled with the user input.

{
 "result": {
 "runId": "5facbf2f2697c1b7",
 "status": "finished",
 "console": [
 ["stdout", "Hello, Lablup!\n"]
],
 "options": null
 }
}

Auto-completion

	URI: /v2/kernel/:id/complete

	Method: POST

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The kernel ID.

	code

	str

	A string containing the code until the current cursor position.

	options.post

	str

	A string containing the code after the current cursor position.

	options.line

	str

	A string containing the content of the current line.

	options.row

	int

	An integer indicating the line number (0-based) of the cursor.

	options.col

	int

	An integer indicating the column number (0-based) in the current line of the cursor.

Example:

{
 "code": "pri",
 "options": {
 "post": "\nprint(\"world\")\n",
 "line": "pri",
 "row": 0,
 "col": 3
 }
}

Response

	HTTP Status Code

	Description

	200 OK

	The kernel has responded with the execution result.
The response body contains a JSON object as described below.

	Fields

	Type

	Values

	result

	list[str]

	An ordered list containing the possible auto-completion matches as strings.
This may be empty if the current kernel does not implement auto-completion
or no matches have been found.

Selecting a match and merging it into the code text are up to the front-end
implementation.

Example:

{
 "result": [
 "print",
 "printf"
]
}

Interrupt

	URI: /v2/kernel/:id/interrupt

	Method: POST

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The kernel ID.

Response

	HTTP Status Code

	Description

	204 No Content

	Sent the interrupt signal to the kernel.
Note that this does not guarantee the effectiveness of the interruption.

 Code Exectuion and Monitoring (Streaming Mode)

Code Exectuion and Monitoring (Streaming Mode)

The streaming mode provides a direct web-based terminal access to kernel containers.

Terminal Emulation

	URI: /v2/stream/kernel/:id/pty

	Method: GET upgraded to WebSockets

This endpoint provides a duplex continuous stream of JSON objects via the native WebSocket.
Although WebSocket supports binary streams, we currently rely on TEXT messages only
conveying JSON payloads to avoid quirks in typed array support in Javascript
across different browsers.

Note

We do not provide any legacy WebSocket emulation interfaces such as socket.io or SockJS.
You need to set up your own proxy if you want to support legacy browser users.

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The kernel ID.

Client-to-Server Protocol

The endpoint accepts the following four types of input messages.

Standard input stream

All ASCII (and UTF-8) inputs must be encoded as base64 strings.
The characters may include control characters as well.

{
 "type": "stdin",
 "chars": "<base64-encoded-raw-characters>"
}

Terminal resize

Set the terminal size to the given number of rows and columns.
You should calculate them by yourself.

For instance, for web-browsers, you may do a simple math by measuring the width
and height of a temporarily created, invisible HTML element with the
(monospace) font styles same to the terminal container element that contains
only a single ASCII character.

{
 "type": "resize",
 "rows": 25,
 "cols": 80
}

Ping

Use this to keep the kernel alive (preventing it from auto-terminated by idle timeouts)
by sending pings periodically while the user-side browser is open.

{
 "type": "ping",
}

Restart

Use this to restart the kernel without affecting the working directory and usage counts.
Useful when your foreground terminal program does not respond for whatever reasons.

{
 "type": "restart",
}

Server-to-Client Protocol

Standard output/error stream

Since the terminal is an output device, all stdout/stderr outputs are merged
into a single stream as we see in real terminals.
This means there is no way to distinguish stdout and stderr in the client-side,
unless your kernel applies some special formatting to distinguish them (e.g.,
make all stderr otuputs red).

The terminal output is compatible with xterm (including 256-color support).

{
 "type": "out",
 "data": "<base64-encoded-raw-characters>"
}

Server-side errors

{
 "type": "error",
 "data": "<human-readable-message>"
}

Executing Snippet via WebSocket

	URI: /v2/stream/kernel/:id/ws

	Method: GET upgraded to WebSockets

This API function is read-only — meaning that you cannot send any data to this URI.

Warning

This API is not implemented yet.

Note

There is timeout enforced in the server-side but you may need to adjust
defaults in your client-side WebSocket library.

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The kernel ID.

Responses

	Field Name

	Value

	name

	The name of an event as a string. May be one of:
"terminated", "restarted"

	reason

	The reason for the event as a canonicalized string
such as "out-of-memory", "bad-action", and "execution-timeout".

Example:

{
 "name": "terminated",
 "reason": "execution-timeout"
}

Rate limiting

The streaming mode uses the same rate limiting policy as other APIs use.
The limitation only applies to all client-generated messages including the
initial WebSocket connection handshake but except stdin type messages such as
individual keystrokes in the terminal.
Server-generated messages are also exempted from rate limiting.

Usage metrics

The streaming mode uses the same method that the query mode uses to measure the
usage metrics such as the memory and CPU time used.

 Code Execution (Batch Mode)

Code Execution (Batch Mode)

Some kernels provide the batch mode, which offers an explicit build step
required for multi-module programs or compiled programming languages.
In this mode, you first upload files in prior to execution.

Uploading files

	URI: /v2/kernel/:id/upload

	Method: POST

Parameters

Upload files to the kernel session.
You may upload multiple files at once using multi-part form-data encoding in the request body (RFC 1867/2388).
The uploaded files are placed under /home/work directory (which is the home directory for all kernels by default),
and existing files are always overwritten.
If the filename has a directory part, non-existing directories will be auto-created.
The path may be either absolute or relative, but only sub-directories under /home/work is allowed to be created.

Hint

This API is for uploading frequently-changing source files in prior to batch-mode execution.
All files uploaded via this API is deleted when the kernel terminates.
Use virtual folders to store and access larger, persistent,
static data and library files for your codes.

Warning

You cannot upload files to mounted virtual folders using this API directly.
However, you may copy/move the generated files to virtual folders in your build script or the main program for later uses.

There are several limits on this API:

	The maximum size of each file

	1 MiB

	The number of files per upload request

	20

Response

	HTTP Status Code

	Description

	200 OK

	The kernel has responded with the execution result.
The response body contains a JSON object as described below.

	400 Bad Request

	Returned when one of the uploaded file exeeds the size limit or there are too many files.

Executing with Build Step

	URI: /v2/kernel/:id

	Method: POST

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The kernel ID.

	mode

	enum[str]

	A constant string "batch".

	code

	str

	Must be an empty string "".

	runId

	str

	A string of client-side unique identifier for this particular run.
For more details about the concept of a run, see Code Execution Model.
If not given, the API server will assign a random one in the first response and the client must use it for the same run afterwards.

	options

	object

	Batch Execution Query Object.

Example:

{
 "type": "batch",
 "options": "{batch-execution-query-object}",
 "runId": "af9185c5fb0eacb2"
}

Response

	HTTP Status Code

	Description

	200 OK

	The kernel has responded with the execution result.
The response body contains a JSON object as described below.

	Fields

	Type

	Values

	result

	object

	Execution Result Object.

Listing Files

Once files are uploaded to the kernel session or generated during the execution
of the code, there is a need to identify what files actually are in the current
session. In this case, use this API to get the list of files of your compute
sesison.

	URI: /v2/kernel/:id/files

	Method: GET

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The kernel ID.

	path

	str

	Path inside the session (default: /home/work).

Response

	HTTP Status Code

	Description

	200 OK

	Success.

	404 Not Found

	There is no such path.

	Fields

	Type

	Values

	files

	str

	Stringified json containing list of files.

	folder_path

	str

	Absolute path inside kernel session.

Downloading Files

Download files from your compute session.

The response contents are multiparts with tarfile binaries. Post-processing,
such as unpacking and save them, should be handled by the client.

	URI: /v2/kernel/:id/download

	Method: GET

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The kernel ID.

	files

	list of str

	File paths inside the virtual folder to download.

Response

	HTTP Status Code

	Description

	200 OK

	Success.

 Virtual Folders

Virtual Folders

Virtual folders provide access to shared, persistent, and reused files across
different kernel sessions.

You can mount virtual folders when creating new kernel sessions, and use them
like a plain directory on the local filesystem.
Of course, reads/writes to virtual folder contents may have degraded
performance compared to the main scratch directory (usually /home/work in
most kernels) as internally it uses a networked file system.

Note

Currently the total size of a virtual folder is limited to 1 GiB and
the number of files is limited to 1,000 files during public beta, but these
limits are subject to change in the future.

Listing Virtual Folders

Retruns the list of virtual folders created by the current keypair.

	URI: /v2/folders

	Method: GET

Parameters

	Parameter

	Type

	Description

	paging

	object

	Paging Query Object.

Response

	HTTP Status Code

	Description

	200 OK

	Success.

	Fields

	Type

	Values

	paging

	object

	Paging Info Object.

	items

	list[object]

	A list of Virtual Folder Item Object.

Creating a virtual folder

	URI: /v2/folders/create

	Method: POST

Creates a virtual folder associated with the current API key.

Parameters

	Parameter

	Type

	Description

	tagName

	str

	The human-readable name of the virtual folder.

Example:

{
 "tagName": "My Data",
}

Response

	HTTP Status Code

	Description

	201 Created

	The kernel is successfully created.

	400 Bad Request

	The name is malformed or duplicate with your existing
virtual folders.

	406 Not acceptable

	You have exceeded internal limits of virtual folders.
(e.g., the maximum number of folders you can have.)

	Fields

	Type

	Values

	folderId

	slug

	The unique folder ID used for later API calls.

Example:

{
 "folderId": "oyU2WOYRYmjCGuKoSkiJ7H2rlN4"
}

Getting Virtual Folder Information

	URI: /v2/folders/:id

	Method: GET

Retrieves information about a virtual folder.
For performance reasons, the returned information may not be real-time; usually
they are updated every a few seconds in the server-side.

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The virtual folder ID.

Response

	HTTP Status Code

	Description

	200 OK

	The information is successfully returned.

	404 Not Found

	There is no such folder.

	Fields

	Type

	Values

	item

	object

	Virtual Folder Item Object.

Deleting Virtual Folder

	URI: /v2/folders/:id

	Method: DELETE

This immediately deletes all contents of the given virtual folder and makes the
folder unavailable for future mounts.

Danger

If there are running kernels that have mounted the deleted virtual folder,
those kernels are likely to break!

Warning

There is NO way to get back the contents once this API is invoked.

Parameters

	Parameter

	Description

	:id

	The virtual folder ID.

Response

	HTTP Status Code

	Description

	204 No Content

	The folder is successfully destroyed.

	404 Not Found

	There is no such folder.

Listing Files in Virtual Folder

Returns the list of files in a virtual folder associated with current keypair.

	URI: /v2/folders/:id/files

	Method: GET

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The virtual folder ID.

	path

	str

	Path inside the virtual folder (default: root).

Response

	HTTP Status Code

	Description

	200 OK

	Success.

	404 Not Found

	There is no such path.

	Fields

	Type

	Values

	files

	str

	Stringified json containing list of files.

	folder_path

	str

	Absolute path inside the virtual folder.

Uploading Files to Virtual Folder

Upload local files to a virtual folder associated with current keypair.

	URI: /v2/folders/:id/upload

	Method: POST

Warning

If a file with the same name already exists in the virtual folder, it will
be overwritten without warning.

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The virtual folder ID.

	Request content

	list of aiohttp.web.FileField_

	List of file objects to upload.

Response

	HTTP Status Code

	Description

	201 Created

	Success.

Downloading Files from Virtual Folder

Download files from a virtual folder associated with the current keypair.

The response contents are streamed as gzipped binaries
(Content-Encoding: gzip). Post-processing, such as reading by chunk or
unpacking the binaries, should be handled by the client.

	URI: /v2/folders/:id/download

	Method: GET

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The virtual folder ID.

	files

	list of str

	File paths inside the virtual folder to download.

Response

	HTTP Status Code

	Description

	200 OK

	Success.

	404 Not Found

	File not found.

Deleting Files in Virtual Folder

This deletes files inside a virtual folder.

Warning

There is NO way to get back the files once this API is invoked.

	URI: /v2/folders/:id/delete_files

	Method: DELETE

Parameters

	Parameter

	Type

	Description

	:id

	slug

	The virtual folder ID.

	files

	list of str

	File paths inside the virtual folder to delete.

Response

	HTTP Status Code

	Description

	200 OK

	Success.

 Introduction

Introduction

Backend.AI’s Admin API is for developing in-house management consoles.

There are two modes of operation:

	Full admin access: you can query all information of all users. It requires a
privileged keypair.

	Restricted owner access: you can query only your own information. The server
processes your request in this mode if you use your own plain keypair.

Warning

The Admin API only accepts authenticated requests.

Tip

To test and debug with the Admin API easily, try the proxy mode of the official Python client [https://pypi.python.org/pypi/backend.ai-client].
It provides an insecure (non-SSL, non-authenticated) local HTTP proxy where all the required authorization headers are attached from the client configuration.
Using this you do not have to add any custom header configurations to your favorite API development tools.

Basics of GraphQL

The Admin API uses a single GraphQL endpoint for both queries and mutations.

https://api.sorna.io/v3/admin/graphql

For more information about GraphQL concepts and syntax, please visit the following site(s):

	GraphQL official website [http://graphql.org/]

HTTP Request Convention

A client must use the POST HTTP method.
The server accepts a JSON-encoded body with an object containing two fields: query and variables,
pretty much like other GraphQL server implementations.

Warning

Currently the API gateway does not support schema discovery which is often
used by API development tools such as Insomnia and GraphiQL.

Field Naming Convention

We do NOT automatically camel-case our field names.
All field names follow the underscore style, which is common in the Python world
as our server-side framework uses Python.

Pagination Convention

GraphQL itself does not enforce how to pass pagination information when
querying multiple objects of the same type.

We use a de-facto standard pagination convention as described below:

TODO

Custom Scalar Types

	UUID: A hexademically formatted (8-4-4-4-12 alphanumeric characters connected via single hyphens) UUID values represented as String

	DateTime: An ISO-8601 formatted date-time value represented as String

Authentication

The admin API shares the same authentication method of the user API.

Versioning

As we use GraphQL, there is no explicit versioning.
You can use any version prefix in the endpoint URL, from v1 to vN where
N is the latest major API version.

 KeyPair Management

KeyPair Management

Full Admin

Query Schema

type KeyPair {
 access_key: String
 secret_key: String
 is_active: Boolean
 is_admin: Boolean
 resource_policy: String
 created_at: DateTime
 last_used: DateTime
 concurrency_limit: Int
 concurrency_used: Int
 rate_limit: Int
 num_queries: Int
 vfolders: [VirtualFolder]
 compute_sessions(status: String): [ComputeSession]
}

type root {
 ...
 keypair(access_key: String): KeyPair
 keypairs(user_id: Int!, is_active: Boolean): [KeyPair]
}

Mutation Schema

input KeyPairInput {
 is_active: Boolean
 resource_policy: String
 concurrency_limit: Int
 rate_limit: Int
}

type CreateKeyPair {
 ok: Boolean
 msg: String
 keypair: KeyPair
}

type ModifyKeyPair {
 ok: Boolean
 msg: String
}

type DeleteKeyPair {
 ok: Boolean
 msg: String
}

type root {
 ...
 create_keypair(user_id: Int!, props: KeyPairInput!): CreateKeyPair
 modify_keypair(access_key: String!, props: KeyPairInput!): ModifyKeyPair
 delete_keypair(access_key: String!): DeleteKeyPair
}

Restricted Owner Access

Query Schema

It shares the same KeyPair type, but you cannot use user_id argument in the root query
because the client can only query the keypair that is being used to make this API query.
Also the returned value is always a single object.

type root {
 ...
 keypair(): KeyPair!
}

Mutation Schema

There is no mutations available.

 Compute Session Monitoring

Compute Session Monitoring

Full Admin

Query Schema

type ComputeSession {
 sess_id: String
 id: UUID
 status: String
 status_info: String
 created_at: DateTime
 terminated_at: DateTime
 agent: String
 container_id: String
 mem_slot: Int
 cpu_slot: Int
 gpu_slot: Int
 num_queries: Int
 cpu_used: Int
 max_mem_bytes: Int
 cur_mem_bytes: Int
 net_rx_bytes: Int
 net_tx_bytes: Int
 io_read_bytes: Int
 io_write_bytes: Int
 lang: String
 workers(status: String): [ComputeWorker]
}

type ComputeWorker {
 sess_id: String
 id: UUID
 status: String
 status_info: String
 created_at: DateTime
 terminated_at: DateTime
 agent: String
 container_id: String
 mem_slot: Int
 cpu_slot: Int
 gpu_slot: Int
 num_queries: Int
 cpu_used: Int
 max_mem_bytes: Int
 cur_mem_bytes: Int
 net_rx_bytes: Int
 net_tx_bytes: Int
 io_read_bytes: Int
 io_write_bytes: Int
}

type root {
 ...
 compute_sessions(access_key: String, status: String): [ComputeSession]
 compute_workers(sess_id: String!, status: String): [ComputeWorker]
}

Restricted Owner Access

Query Schema

It shares the same ComputeSession and ComputeWorker type, but with a slightly different root query type:

type root {
 ...
 compute_sessions(status: String): [ComputeSession]
 compute_workers(sess_id: String!, status: String): [ComputeWorker]
}

 Virtual Folder Management

Virtual Folder Management

Full Admin

Query Schema

type VirtualFolder {
 id: UUID
 host: String
 name: String
 max_files: Int
 max_size: Int
 created_at: DateTime
 last_used: DateTime
 num_files: Int
 cur_size: Int
}

type rootQuery {
 ...
 vfolders(access_key: String): [VirtualFolder]
}

Restricted Owner Access

Query Schema

It shares the same VirtualFolder type, but you cannot use access_key argument in the root query.

type root {
 ...
 vfolders(): [VirtualFolder]
}

 Statistics

Statistics

Full Admin

Query Schema

TODO

Restricted Owner Access

Query Schema

TODO

 Development Setup

Development Setup

Currently Backend.AI is developed and tested under only *NIX-compatible platforms (Linux or macOS).

Method 1: Automatic Installation

For the ease of on-boarding developer experience, we provide an automated
script that installs all server-side components in editable states with just
one command.

Prerequisites

Install the followings accordingly to your host operating system.

	pyenv [https://github.com/pyenv/pyenv] and pyenv-virtualenv [https://github.com/pyenv/pyenv-virtualenv]

	docker [https://docs.docker.com/install/]

	docker-compose [https://docs.docker.com/compose/install/]

Note

In some cases, locale conflicts between the terminal client and the remote host
may cause encoding errors when installing Backend.AI components due to Unicode characters
in README files. Please keep correct locale configurations to prevent such errors.

Warning

In macOS, Homebrew offers its own pyenv and pyenv-virtualenv packages but we do
not recommend using them! Updating those packages and cleaning up via
Homebrew will break your virtual environments as each version uses different
physical directories.

Our installer script will try to install pyenv automatically if not installed,
but we do recommend installing them by yourself as it may interfere with your
shell configurations.

Running the script

$ wget https://raw.githubusercontent.com/lablup/backend.ai/master/scripts/install-dev.sh
$ chmod +x ./install-dev.sh
$./install-dev.sh

Note

The script may ask your root password in the middle to run sudo in Linux.

This installs a set of Backend.AI server-side components in the
backend.ai-dev directory under the current working directory.

Inside the directory, there are manager, agent, common and a few
other auxiliary directories. You can directly modify the source codes inside
them and re-launch the gateway and agent. The common directory is shared
by manager and agent so just editing sources there takes effects in the
next launches of the gateway and agent.

At the end of execution, the script will show several command examples about
launching the gateway and agent. It also displays a unique random key called
“environment ID” to distinguish a particular execution of this script so that
repeated execution does not corrupt your existing setups.

By default, the script pulls the docker images for our standard Python kernel and
TensorFlow CPU-only kernel. To try out other images, you have to pull them
manually afterwards.

The script provides a set of command-line options. Check out them using -h
/ --help option.

Note

To install multiple instances of development environments using this script,
you need to run the script at different working directories because
the backend.ai-dev directory name is fixed.

Also, you cannot run multiple gateways and agents from different environments
at the same time because docker container in different environments use the
same TCP ports of the host system. Use docker-compose command to stop
the current environment and start another to switch between environments.
Please do not forget to specify -p <ENVID> option to docker-compose
commands to distinguish different environments.

Resetting the environment

$ wget https://raw.githubusercontent.com/lablup/backend.ai/master/scripts/delete-dev.sh
$ chmod +x ./delete-dev.sh
$./delete-dev.sh --env <ENVID>

Note

The script may ask your root password in the middle to run sudo in Linux.

This will purge all docker resources related to the given environment ID and
the backend.ai-dev directory under the current working directory.

The script provides a set of command-line options. Check out them using -h
/ --help option.

Warning

Be aware that this script force-removes, without any warning, all contents
of the backend.ai-dev directory, which may contain your own
modifications that is not yet pushed to a remote git repository.

Method 2: Manual Installation

Requirement packages

	PostgreSQL: 9.6

	etcd: v3.3.9

	redis: latest

Prepare containers for external daemons

First install an appropriate version of Docker (later than 2017.03 version) and docker-compose (later than 1.21).
Check out the Install Docker guide.

Note

In this guide, $WORKSPACE means the absolute path to an arbitrary working directory in your system.

To copy-and-paste commands in this guide, set WORKSPACE environment variable.

The directory structure would look like after finishing this guide:

	
	$WORKSPACE

	
	backend.ai

	backend.ai-manager

	backend.ai-agent

	backend.ai-common

	backend.ai-client-py

$ cd $WORKSPACE
$ git clone https://github.com/lablup/backend.ai
$ cd backend.ai
$ docker-compose -f docker-compose.halfstack.yml up -d
$ docker ps # you should see 3 containers running

[image: asciicast]
 [https://asciinema.org/a/Q2Y3JuwqYoJjG9RB64Ovcpal2]This will create and start PostgreSQL, Redis, and a single-instance etcd containers.
Note that PostgreSQL and Redis uses non-default ports by default (5442 and 6389 instead of 5432 and 6379)
to prevent conflicts with other application development environments.

Prepare Python 3.6+

Check out Install Python via pyenv for instructions.

Create the following virtualenvs: venv-manager, venv-agent, venv-common, and venv-client.

[image: asciicast]
 [https://asciinema.org/a/xcMY9g5iATrCchoziCbErwgbG]

Prepare dependent libraries

Install snappy (brew on macOS), libsnappy-dev (Debian-likes), or libsnappy-devel (RHEL-likes) system package depending on your environment.

Prepare server-side source clones

[image: asciicast]
 [https://asciinema.org/a/SKJv19aNu9XKiCTOF0ASXibDq]Clone the Backend.AI source codes.

$ cd $WORKSPACE
$ git clone https://github.com/lablup/backend.ai-manager
$ git clone https://github.com/lablup/backend.ai-agent
$ git clone https://github.com/lablup/backend.ai-common

Inside each directory, install the sources as editable packages.

Note

Editable packages makes Python to apply any changes of the source code in git clones immediately when importing the installed packages.

$ cd $WORKSPACE/backend.ai-manager
$ pyenv local venv-manager
$ pip install -U -r requirements-dev.txt

$ cd $WORKSPACE/backend.ai-agent
$ pyenv local venv-agent
$ pip install -U -r requirements-dev.txt

$ cd $WORKSPACE/backend.ai-common
$ pyenv local venv-common
$ pip install -U -r requirements-dev.txt

(Optional) Symlink backend.ai-common in the manager and agent directories to the cloned source

If you do this, your changes in the source code of the backend.ai-common directory will be reflected immediately to the manager and agent.
You should install backend.ai-common dependencies into venv-manager and venv-agent as well, but this is already done in the previous step.

$ cd "$(pyenv prefix venv-manager)/src"
$ mv backend.ai-common backend.ai-common-backup
$ ln -s "$WORKSPACE/backend.ai-common" backend.ai-common

$ cd "$(pyenv prefix venv-agent)/src"
$ mv backend.ai-common backend.ai-common-backup
$ ln -s "$WORKSPACE/backend.ai-common" backend.ai-common

Initialize databases and load fixtures

Check out the Prepare Databases for Manager guide.

Prepare Kernel Images

You need to pull the kernel container images first to actually spawn compute sessions.

 Adding New REPL Kernels

Adding New REPL Kernels

Architecture Overview

Inside containers, each kernel is a simple daemon process that accepts user code snippets and replies with its execution results via TCP-based ZeroMQ connections.
The rationale to use ZeroMQ is:
1) it is message-based; we do not have to concern the message boundaries and encodings,
2) it automatically reconnects when the connection is lost due to network failures or packet losses,
3) it is one of the most universally supported networking library in various programming languages.

A kernel should offer the query mode and/or the PTY mode.
The TCP port 2001 is reserved for the query mode whereas 2002 and 2003 are reserved for the PTY mode (stdin and stdout combined with stderr).

Ingredients of Kernel Images

A kernel is a Docker image with the following format:

	Dockerfile

	WORKDIR /home/work: this path is used to mount an external directory so that the agent can access files generated by user codes.

	CMD must be set to the main program.

	Required Labels

	io.sorna.maxcores: N (the number of CPU cores recommended for this kernel)

	io.sorna.maxmem: M (the memory size in a human-readable bytes recommended for this kernel, 128m (128 MBytes) for example)

	io.sorna.timeout: T (the maximum seconds allowed to execute a single query)

	Above limits are used as default settings by Backend.AI Agent, but the agents may enforce lower limits due to the service policy. Backend.AI Gateway may refer these information for load balancing and scheduling.

	io.sorna.mode: query, pty, or query+pty

	Optional Labels

	io.sorna.envs.corecount: a comma-separated string of environment variable names which will be set to the number of assigned CPU cores by the agent. (e.g., JULIA_CPU_CORES, OPENBLAS_NUM_THREADS)

	io.sorna.nvidia.enabled: yes or no (if yes, Backend.AI Agent attaches an NVIDIA CUDA GPU device with a driver volume. You must use nvidia-docker images [https://github.com/NVIDIA/nvidia-docker] as base of your Dockerfile.)

	io.sorna.extra_volumes: a comma-separated string of extra volume mounts (volume name and path inside container separated by a colon), such as deep learning sample data sets (e.g., sample-data:/home/work/samples,extra-data:/home/work/extra).
Note that we allow only read-only mounts.
The available list of extra volumes depends on your Backend.AI Agent setup; there is no standard or predefined ones.
If you want to add a new one, use docker volume commands.
When designated volumes do not exist in the agent’s host, the agent silently skips mounting them.

	io.sorna.features: a comma-separated string keywords indicating available features of this kernel.

	Keyword

	Feature

	media.images

	Generates images (PNG, JPG, and SVG) without uploading into AWS S3.

	media.svgplot

	Generates plots in SVG.

	media.drawing

	Generates animated vector graphics which can be rendered by sorna-media [https://github.com/lablup/sorna-media] Javascript library

	media.audio

	Generates audio signal streams. (not implemented)

	The main program that implements the query mode and/or the PTY mode (see below).

	We strongly recommend to create a normal user instead of using root for the main program.

	The main program should be wrapped with jail [https://github.com/lablup/sorna-repl/tree/master/bin], like:

#! /bin/bash
exec /home/sorna/jail default `which lua` /home/sorna/run.lua

The first argument to jail is the policy name and the second and laters are the absolute path of the main program with its arguments.
To customize the jail policy, see below.

	jail and intra-jail must be copied into the kernel image.

	Other auxilliary files used in Dockerfile or the main program.
(e.g., Python and package installation scripts)

Writing Query Mode Kernels

Most kernels fall into this category.
You just write a simple blocking loop that receives a input code message and send a output result message via a ZeroMQ REP socket listening on port 2001.
All complicated stuffs such as multiplexing multiple user requests and container management is done by Backend.AI Agent.

The input is a ZeroMQ’s multipart message with two payloads.
The first payload should contain a unique identifier for the code snippet (usually a hash of it), but currently it is ignored (reserved for future caching implementations).
The second payload should contain a UTF-8 encoded source code string.

The reply is a ZeroMQ’s multipart message with a single payload, containing a UTF-8 encoded string of the following JSON object:

{
 "stdout": "hello world!",
 "stderr": "oops!",
 "exceptions": [
 ["exception-name", ["arg1", "arg2"], false, null]
],
 "media": [
 ["image/png", "data:image/base64,...."]
],
 "options": {
 "upload_output_files": true
 }
}

Each item in exceptions is an array composed of four items:
exception name,
exception arguments (optional),
a boolean indicating if the exception is raised outside the user code (mostly false),
and a traceback string (optional).

Each item in media is an array of two items: MIME-type and the data string.
Specific formats are defined and handled by the Backend.AI Media module.

The options field may present optionally.
If upload_output_files is true (default), then the agent uploads the files generated by user code in the working directory (/home/work) to AWS S3 bucket and make their URLs available in the front-end.

Writing PTY Mode Kernels

If you want to allow users to have real-time interactions with your kernel using web-based terminals, you should implement the PTY mode as well.
A good example is our “git” kernel runner [https://github.com/lablup/backend.ai-kernel-runner/blob/master/src/ai/backend/kernel/git/__init__.py].

The key concept is separation of the “outer” daemon and the “inner” target program (e.g., a shell).
The outer daemon should wrap the inner program inside a pseudo-tty.
As the outer daemon is completely hidden in terminal interaction by the end-users, the programming language may differ from the inner program.
The challenge is that you need to implement piping of ZeroMQ sockets from/to pseudo-tty file descriptors.
It is up to you how you implement the outer daemon, but if you choose Python for it, we recommend to use asyncio or similar event loop libraries such as tornado and Twisted to mulitplex sockets and file descriptors for both input/output directions.
When piping the messages, the outer daemon should not apply any specific transformation; it should send and receive all raw data/control byte sequences transparently because the front-end (e.g., terminal.js) is responsible for interpreting them.
Currently we use PUB/SUB ZeroMQ socket types but this may change later.

Optionally, you may run the query-mode loop side-by-side.
For example, our git kernel supports terminal resizing and pinging commands as the query-mode inputs.
There is no fixed specification for such commands yet, but the current CodeOnWeb uses the followings:

	%resize <rows> <cols>: resize the pseudo-tty’s terminal to fit with the web terminal element in user browsers.

	%ping: just a no-op command to prevent kernel idle timeouts while the web terminal is open in user browsers.

A best practice (not mandatory but recommended) for PTY mode kernels is to automatically respawn the inner program if it terminates (e.g., the user has exited the shell) so that the users are not locked in a “blank screen” terminal.

Writing Custom Jail Policies

Implement the jail policy interface [https://github.com/lablup/backend.ai-jail] in Go and ebmed it inside your jail build.
Please give a look to existing jail policies as good references.

 Index

Index

 Configure Autoscaling

Configure Autoscaling

Autoscaling strategies may vary cluster by cluster.
Here we introduce a brief summary of high-level guides.
(More details about configuring Backend.AI will follow soon.)

ASG (Auto-scaling Group)

AWS and other cloud providers offer auto-scaling groups so that they control the number of VM instances sharing the same base image within certain limits depending on the VMs’ CPU utilization or other resource metrics.
You could use this model for Backend.AI, but we recommend some customization due to the following reasons:

	Backend.AI’s kernels are allocated a fixed and isolated amount of resources even when they do not use that much. So simple resource metering may expose “how busy” the spawned kernels are but not “how many” kernels are spwned. In the perspective of Backend.AI’s scheduler, the latter is much more important.

	Backend.AI tries to maintain low latency when spawning new compute sessions. This means that it requires to keep a small number of VM instances to be at a “hot” ready state – maybe just running idle ones or stopped ones for fast booting. If the cloud provider supports such fine-grained control, it is best to use their options. We are currently under development of Backend.AI’s own fine-grained scaling.

	The Backend.AI scheduler treats GPUs as the first-class citizen like CPU cores and main memory for its capacity planning. Traditional auto-scaling metrics often miss this, so you need to set up a custom metric using vendor-specific ways.

 Install Agent

Install Agent

We assume that your system is configured with a sudoable admin user named devops.
Your Backend.AI manager should be already set up and running.

Guide variables

⚠️ Prepare the values of the following variables before working with this page and replace their occurrences with the values when you follow the guide.

	Name

	Meaning

	{NS}

	The etcd namespace (just create a unique string like domain names)

	{ETCDADDR}

	The etcd cluster address ({ETCDHOST}:{ETCDPORT}, localhost:2379 for development setup)

	{ENDPOINT}

	The DNS hostname of the API server (depending on your environment, this may be either a publicly registered domain or a local private domain)

Optional variables

	Name

	Meaning

	{SSLCERT}

	The path to your SSL certificate (bundled with CA chain certificates)

	{SSLPKEY}

	The path to your SSL private key

	{S3AKEY}

	The access key for AWS S3 or compatible services 1

	{S3SKEY}

	The secret key for AWS S3 or compatible services

	{DDAPIKEY}

	The Datadog API key

	{DDAPPKEY}

	The Datadog application key

	{SENTRYURL}

	The private Sentry report URL

	1

	AWS S3 is used to store the output files generated by the user code in kernels’ /home/work/.output directory.
If not specified, Backend.AI will just skip uploading generated files.

Install dependencies for daemonization

Ubuntu

$ sudo apt-get -y update
$ sudo apt-get -y dist-upgrade
$ sudo apt-get install -y ca-certificates git-core supervisor

Here are some optional but useful packages:

$ sudo apt-get install -y vim tmux htop

CentOS / RHEL

(TODO)

Prepare CUDA (if available)

Check out the [[Install CUDA]] guide.

Prepare Python 3.6+

Check out [[Install Python via pyenv]] for instructions.
Create a virtualenv named venv-agent.

(Only in Linux) To enable detailed resource statistics, give the Python executable to have CAP_SYS_ADMIN, CAP_SYS_PTRACE, and CAP_DAC_OVERRIDE capabilities.

$ sudo setcap cap_sys_ptrace,cap_sys_admin,cap_dac_override+eip "$(readlink -f $(pyenv which python))"

Install Backend.AI Agent as Package

$ pyenv shell venv-agent
$ pip install -U setuptools pip
$ pip install -U backend.ai-agent

Monitoring and Logging

Check out the [[Install Monitoring and Logging Tools]] guide.

Configure supervisord

$ sudo vi /etc/supervisor/conf.d/apps.conf

[program:backendai-agent]
user = devops
stopsignal = TERM
stopasgroup = true
command = /home/devops/run-agent.sh

$ vi /home/devops/init-venv.sh

#!/bin/bash
export PYENV_ROOT="$HOME/.pyenv"
export PATH="$PYENV_ROOT/bin:$PATH"
eval "$(pyenv init -)"
eval "$(pyenv virtualenv-init -)"
pyenv shell venv-agent

$ sudo mkdir -p /var/cache/scratches
$ sudo chown devops:devops /var/cache/scratches

$ vi /home/devops/run-agent.sh

source /home/devops/init-venv.sh
umask 0002
export AWS_ACCESS_KEY_ID="{S3AKEY}"
export AWS_SECRET_ACCESS_KEY="{S3SEKEY}"
export DATADOG_API_KEY={DDAPIKEY}
export DATADOG_APP_KEY={DDAPPKEY}
export RAVEN_URI="{SENTRYURL}"
exec python -m ai.backend.agent.server \
 --etcd-addr {ETCDADDR} \
 --namespace {NS} \
 --scratch-root=/var/cache/scratches

Prepare Kernel Images

You need to pull the kernel container images first to actually spawn compute sessions.
The name and tag pairs of images must be also specified in backend.ai-manager/sample-configs/image-metadata.yml file imported into etcd.

Here are the pull commands for a few commonly used Python-based images:

$ docker pull lablup/kernel-python:3.6-debian
$ docker pull lablup/kernel-python-tensorflow:1.8-py36
$ docker pull lablup/kernel-python-tensorflow:1.8-py36-gpu

For the full list of publicly available kernels, check out the kernels repository. [https://github.com/lablup/backend.ai-kernels]

Finally, Run!

$ sudo supervisorctl reread
$ sudo supervisorctl start backendai-agent

 Manually install CUDA at on-premise GPU servers

 On the clouds, we highly recommend using vendor-provided GPU-optimized instance types (e.g., p2/p3 series on AWS) and GPU-optimized virtual machine images which include ready-to-use CUDA drivers and configurations.

Since Backend.AI’s kernel container images ship all the necessary libraries and 3rd-party computation packages, you may choose the light-weight “base” image (e.g., Amazon Deep Learning Base AMI) instead of full-featured images (e.g., Amazon Deep Learning Conda AMI).

Manually install CUDA at on-premise GPU servers

Please search for this topic on the Internet, as Linux distributions often provide their own driver packages and optimized method to install CUDA.

To download the driver and CUDA toolkit directly from NVIDIA, visit here [https://developer.nvidia.com/cuda-downloads].

Let Backend.AI to utilize GPUs

If an agent server has properly configured nvidia-docker (ref: [[Install Docker]]) with working host-side drivers and the agent’s Docker daemon has GPU-enabled kernel images, there is nothing to do special.
Backend.AI tracks the GPU capacity just like CPU cores and RAM, and uses that information to schedule and assign GPU-enabled kernels.

 Install Docker

Install Docker

[image: asciicast]
 [https://asciinema.org/a/dCkoIy27EwVvO6sVVXNaAWcCp]For platform-specific instructions, please consult the docker official documentation [https://docs.docker.com/engine/installation/].

Alternative way of docker installation on Linux (Ubuntu, CentOS, …)

$ curl -fsSL https://get.docker.io | sh

type your password to install docker.

Run docker commands without sudo (required)

By default, you need sudo to execute docker commands.

 Install Manager

Install Manager

We assume that your system is configured with a sudoable admin user named devops.
Also, you should already have a running etcd cluster, PostgreSQL and Redis servers as guided in previous step guides.

Guide variables

	warning

	Prepare the values of the following variables before working with this page and replace their occurrences with the values when you follow the guide.

	Name

	Meaning

	{NS}

	The etcd namespace (just create a unique string like domain names)

	{ETCDADDR}

	The etcd cluster address ({ETCDHOST}:{ETCDPORT}, localhost:2379 for development setup)

	{REDISADDR}

	The Redis server address ({REDISHOST}:{REDISPORT}, localhost:6389 for development setup)

	{DBADDR}

	The PostgreSQL server address ({DBHOST}:{DBPORT}, localhost:5442 for development setup)

	{DBUSER}

	The database username (e.g., postgres for development setup)

	{DBPASS}

	The database password (e.g., develove for development setup)

	{ENDPOINT}

	The DNS hostname of the API server (depending on your environment, this may be either a publicly registered domain or a local private domain)

Optional variables

	Name

	Meaning

	{SSLCERT}

	The path to your SSL certificate (bundled with CA chain certificates)

	{SSLPKEY}

	The path to your SSL private key

	{S3AKEY}

	The access key for AWS S3 or compatible services 1

	{S3SKEY}

	The secret key for AWS S3 or compatible services

	{DDAPIKEY}

	The Datadog API key

	{DDAPPKEY}

	The Datadog application key

	{SENTRYURL}

	The private Sentry report URL

	1

	AWS S3 is used to store the output files generated by the user code in kernels’ /home/work/.output directory. If not specified, Backend.AI will just skip uploading generated files.

Install dependencies for daemonization

Ubuntu

$ sudo apt-get -y update
$ sudo apt-get -y dist-upgrade
$ sudo apt-get install -y ca-certificates git-core nginx supervisor libsnappy-dev

Here are some optional but useful packages:

$ sudo apt-get install -y vim tmux htop

CentOS / RHEL

(TODO)

Prepare Python 3.6+

Check out Install Python via pyenv for instructions.

 Install monitoring and logging tools

Install monitoring and logging tools

The Backend.AI can use several 3rd-party monitoring and logging services.
Using them is completely optional.

Guide variables

⚠️ Prepare the values of the following variables before working with this page and replace their occurrences with the values when you follow the guide.

	Name

	Description

	{DDAPIKEY}

	>The Datadog API key

	{DDAPPKEY}

	The Datadog application key

	{SENTRYURL}

	The private Sentry report URL

Install Datadog agent

Datadog [https://www.datadoghq.com] is a 3rd-party service to monitor the server resource usage.

$ DD_API_KEY={DDAPIKEY} bash -c "$(curl -L https://raw.githubusercontent.com/DataDog/dd-agent/master/packaging/datadog-agent/source/install_agent.sh)"

Install Raven (Sentry client)

Raven is the official client package name of Sentry [https://sentry.io], which reports detailed contextual information such as stack and package versions when an unhandled exception occurs.

$ pip install "raven>=6.1"

 Install on Clouds

Install on Clouds

	Prepare the instances and databases.

	1x SSL certificate with a private key for your own domain (for production)

	1x gateway instance (e.g., t2.xlarge on AWS)

	1x agent instances (e.g., t2.medium / p2.xlarge on AWS – for minimal testing)

	1x PostgreSQL instance (e.g., AWS RDS)

	1x Redis instance (e.g., AWS ElasticCache)

	1x etcd cluster

	It is up to you whether to setup a HA-enabled multi-instance cluster or a single-instance cluster with storage backups.

	Check out [[this page|Install etcd]] for details. If you install etcd on the same instance where the manager runs, you could try using docker-compose configuration in this meta-repository’s code.

	1x cloud file system (e.g., AWS EFS, Azure FileShare)

	All should be in the same virtual private network.

	Install Manager

	After done, create an image of this instance as a backup.

	Install Agent

	After done, create an image of this instance for ease of manual/autoamtic scaling.

	Configure Autoscaling

 Install on Premise

Install on Premise

	Prepare the instances and databases.

	1x SSL certificate with a private key for your own domain (for production)

	1x gateway server

	1x agent server

	1x PostgreSQL server

	1x Redis server

	1x etcd cluster

	It is up to you whether to setup a HA-enabled multi-server cluster or a single-server cluster with backups.

	Check out [[this page|Install etcd]] for details. If you install etcd on the same instance where the manager runs, you could try using docker-compose configuration in this meta-repository’s code.

	1x network-accessible storage server (NAS) with NFS/SMB mounts

	All should be in the same private network (LAN).

	Depending on the cluster size, different service daemons may run on the same physical server.

	Install Manager

	Install Agent

 Install dependencies for building Python

 We highly recommend pyenv [https://github.com/pyenv/pyenv] to install multiple Python versions side-by-side,
which does not interfere with system-default Pythons.

[image: asciicast]
 [https://asciinema.org/a/ow9AdNDqjGnkN5ky2dyxMaQmQ]
Install dependencies for building Python

Ubuntu

$ sudo apt-get update -y
$ sudo apt-get dist-upgrade -y
$ sudo apt-get install -y \
> build-essential git-core # for generic C/C++ builds
> libreadline-dev libsqlite3-dev libssl-dev libbz2-dev tk-dev # for Python builds
> libzmq3-dev libsnappy-dev # for Backend.AI dependency builds

CentOS / RHEL

(TODO)

Install pyenv

NOTE: Change ~/.profile accroding to your shell/system (e.g., ~/.bashrc, ~/.bash_profile, ~/.zshrc, …) – whichever loaded at startup of your shell!

$ git clone https://github.com/pyenv/pyenv.git ~/.pyenv
...
$ echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.profile
$ echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.profile
$ echo 'eval "$(pyenv init -)"' >> ~/.profile
$ exec $SHELL -l
$ pyenv # check installation
pyenv 1.2.0-6-g9619e6b
Usage: pyenv <command> [<args>]

Some useful pyenv commands are:
 ...

Install pyenv’s virtualenv plugin

$ git clone https://github.com/pyenv/pyenv-virtualenv.git ~/.pyenv/plugins/pyenv-virtualenv
...
$ echo 'eval "$(pyenv virtualenv-init -)"' >> ~/.profile
$ exec $SHELL -l
$ pyenv virtualenv # check installation
pyenv-virtualenv: no virtualenv name given.

Install Python via pyenv

Install Python 3.6 latest version.

 Prepare Database for Manager

Prepare Database for Manager

Guide variables

⚠️ Prepare the values of the following variables before working with this page and replace their occurrences with the values when you follow the guide.

	Name

	Description

	{NS}

	The etcd namespace

	{ETCDADDR}

	The etcd cluster address ({ETCDHOST}:{ETCDPORT}, localhost:8120 for development setup)

	{DBADDR}

	The PostgreSQL server address ({DBHOST}:{DBPORT}, localhost:8100 for development setup)

	{DBUSER}

	The database username (e.g., postgres for development setup)

	{DBPASS}

	The database password (e.g., develove for development setup)

	{STRGMOUNT}

	The path to a directory that the manager and all agents share together (e.g., a network-shared storage mountpoint). Note that the path must be same across all the nodes that run the manager and agents.

Development setup: Use an arbitrary empty directory where Docker containers can also mount as volumes — e.g., Docker for Mac requires explicit configuration for mountable parent folders. [https://docs.docker.com/docker-for-mac/#file-sharing]

Load initial etcd data

[image: asciicast]
 [https://asciinema.org/a/8vM2cEHEHQzCMaOummV4ruDAm]$ cd backend.ai-manager

Copy sample-configs/image-metadata.yml and sample-configs/image-aliases.yml and edit according to your setup.

$ cp sample-configs/image-metadata.yml image-metadata.yml
$ cp sample-configs/image-aliases.yml image-aliases.yml

By default you can pull the images listed in the sample via docker pull lablup/kernel-xxxx:tag(e.g. docker pull lablup/kernel-python-tensorflow:latest for the latest tensorflow) as they are hosted on the public Docker registry.

Load image registry metadata

(Instead of manually specifying environment variables, you may use scripts/run-with-halfstack.sh script in a development setup.)

$ BACKEND_NAMESPACE={NS} BACKEND_ETCD_ADDR={ETCDADDR} \
> python -m ai.backend.manager.cli etcd update-images \
> -f image-metadata.yml

Load image aliases

$ BACKEND_NAMESPACE={NS} BACKEND_ETCD_ADDR={ETCDADDR} \
> python -m ai.backend.manager.cli etcd update-aliases \
> -f image-aliases.yml

Set the default storage mount for virtual folders

$ BACKEND_NAMESPACE={NS} BACKEND_ETCD_ADDR={ETCDADDR} \
> python -m ai.backend.manager.cli etcd put \
> volumes/_vfroot {STRGMOUNT}

Database Setup

Create a new database

In docker-compose based configurations, you may skip this step.

$ psql -h {DBHOST} -p {DBPORT} -U {DBUSER}

postgres=# CREATE DATABASE backend;
postgres=# \q

Install database schema

Backend.AI uses alembic [http://alembic.zzzcomputing.com/en/latest/] to manage database schema and its migration during version upgrades.
First, localize the sample config:

$ cp alembic.ini.sample alembic.ini

Modify the line where sqlalchemy.url is set.
You may use the following shell command:
(ensure that special characters in your password are properly escaped)

$ sed -i'' -e 's!^sqlalchemy.url = .*$!sqlalchemy.url = postgresql://{DBUSER}:{DBPASS}@{DBHOST}:{DBPORT}/backend!' alembic.ini

$ python -m ai.backend.manager.cli schema oneshot head

example execution result

201x-xx-xx xx:xx:xx INFO alembic.runtime.migration [MainProcess] Context impl PostgresqlImpl.
201x-xx-xx xx:xx:xx INFO alembic.runtime.migration [MainProcess] Will assume transactional DDL.
201x-xx-xx xx:xx:xx INFO ai.backend.manager.cli.dbschema [MainProcess] Detected a fresh new database.
201x-xx-xx xx:xx:xx INFO ai.backend.manager.cli.dbschema [MainProcess] Creating tables...
201x-xx-xx xx:xx:xx INFO ai.backend.manager.cli.dbschema [MainProcess] Stamping alembic version to head...
INFO [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO [alembic.runtime.migration] Will assume transactional DDL.
INFO [alembic.runtime.migration] Running stamp_revision -> f9971fbb34d9

NOTE: All sub-commands under “schema” uses alembic.ini to establish database connections.

Load initial fixtures

Edit ai/backend/manager/models/fixtures.py so that you have a randomized admin keypair.

(TODO: automate here!)

Then pour it to the database:

$ python -m ai.backend.manager.cli \
> --db-addr={DBHOST}:{DBPORT} \
> --db-user={DBUSER} \
> --db-password={DBPASS}
> --db-name=backend \
> fixture populate example_keypair

example execution result

201x-xx-xx xx:xx:xx INFO ai.backend.manager.cli.fixture [MainProcess] populating fixture 'example_keypair'

 Server Concepts

Server Concepts

Here we describe what the core components of Backend.AI do and why/how we use 3rd-party components.

[image: Server architecture diagram]

 Version Numbering

Version Numbering

	Version numbering uses x.y.z format (where x, y, z are integers).

	Mostly, we follow the semantic versioning scheme [https://semver.org/].

	x.y is a release branch name.

	x.y.z is a release tag name.

	When releasing x.y.0:

	Create a new x.y branch, do all bugfix/hotfix there, and make x.y.z releases there.

	All fixes in the x.y branch must be merged back to master and develop.

	Use git merge --no-ff --no-commit master to inspect the changes before commits.

	When merging back, you would encounter merge conflicts on the version number (e.g., ai/backend/manager/__init__.py) if you are doing it after releasing x.y.z patch builds: then resolve it by preserving the version number of the ``master`` branch. (example here [https://github.com/lablup/backend.ai-manager/commit/8a498ad4a24e4e074d683a3e2fc177647eb17a9a])

	It is recommeded to use “merge” but you may use “cherry-pick” as well, to keep the history clean if master has deviated too much.

	Change the version number of master to x.(y+1).0a1

	There is no strict rules about alpha/beta/rc builds yet. We will elaborate as we scale up._images/SKJv19aNu9XKiCTOF0ASXibDq.png
This recording has been archived

_images/dCkoIy27EwVvO6sVVXNaAWcCp.png
This recording has been archived

_images/8vM2cEHEHQzCMaOummV4ruDAm.png
This recording has been archived

_images/Q2Y3JuwqYoJjG9RB64Ovcpal2.png
This recording has been archived

_images/xcMY9g5iATrCchoziCbErwgbG.png
This recording has been archived

_images/dJQKPrcmIliVkCX4ldSg3rPki.png
This recording has been archived

_images/ow9AdNDqjGnkN5ky2dyxMaQmQ.png
This recording has been archived

_static/ajax-loader.gif

_images/0000005.png

_images/0000006.png

_images/0000003.png

_images/0000004.png

_images/0000007.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Backend.AI Documentation

 		
 API Overview

 		
 API KeyPair Registration

 		
 Accessing Admin APIs

 		
 Python Client Library

 		
 Requirements

 		
 Installation

 		
 Configuration

 		
 Overview

 		
 Guides

 		
 Server Installation Guides

 		
 Supplemental Guides

 		
 Developer Guides

 		
 Demo Setup

 		
 Prerequisites

 		
 Notes

 		
 All you have to do

 		
 Pulling kernel images

 		
 Using Clients

 		
 FAQ

 		
 Development Setup

 		
 Method 1: Automatic Installation

 		
 Prerequisites

 		
 Running the script

 		
 Resetting the environment

 		
 Method 2: Manual Installation

 		
 Requirement packages

 		
 Prepare containers for external daemons

 		
 Prepare Python 3.6+

 		
 Prepare dependent libraries

 		
 Prepare server-side source clones

 		
 Initialize databases and load fixtures

 		
 Prepare Kernel Images

 		
 Setting Linux capabilities to Python (Linux-only)

 		
 Running daemons from cloned sources

 		
 Prepare client-side source clones

 		
 Verifying Installation

 		
 API and Document Conventions

 		
 HTTP Methods

 		
 Parameters in URI and JSON Request Body

 		
 HTTP Status Codes and JSON Response Body

 		
 JSON Field Notation

 		
 JSON Value Types

 		
 API Versioning

 		
 Authentication

 		
 Access Tokens and Secret Key

 		
 Common Structure of API Requests

 		
 Common Structure of API Responses

 		
 Signing API Requests

 		
 Generating a signing key

 		
 Generating a string to sign

 		
 Attaching the signature

 		
 Example Requests and Responses

 		
 Success example for checking the latest API version

 		
 Failure example with a missing authorization header

 		
 Rate Limiting

 		
 JSON Object References

 		
 Paging Query Object

 		
 Paging Info Object

 		
 KeyPair Item Object

 		
 KeyPair Properties Object

 		
 Batch Execution Query Object

 		
 Execution Result Object

 		
 Kernel Session Item Object

 		
 Creation Config Object

 		
 Virtual Folder Item Object

 		
 Introduction

 		
 Code Execution Model

 		
 Handling Console Output

 		
 Kernel Management

 		
 Creating Kernel Session

 		
 Parameters

 		
 Response

 		
 Getting Kernel Information

 		
 Parameters

 		
 Response

 		
 Destroying Kernel Session

 		
 Parameters

 		
 Response

 		
 Restarting Kernel Session

 		
 Parameters

 		
 Response

 		
 Code Execution (Query Mode)

 		
 Executing Snippet

 		
 Parameters

 		
 Response

 		
 Auto-completion

 		
 Parameters

 		
 Response

 		
 Interrupt

 		
 Parameters

 		
 Response

 		
 Code Exectuion and Monitoring (Streaming Mode)

 		
 Terminal Emulation

 		
 Parameters

 		
 Client-to-Server Protocol

 		
 Server-to-Client Protocol

 		
 Executing Snippet via WebSocket

 		
 Parameters

 		
 Responses

 		
 Rate limiting

 		
 Usage metrics

 		
 Code Execution (Batch Mode)

 		
 Uploading files

 		
 Parameters

 		
 Response

 		
 Executing with Build Step

 		
 Parameters

 		
 Response

 		
 Listing Files

 		
 Parameters

 		
 Response

 		
 Downloading Files

 		
 Parameters

 		
 Response

 		
 Virtual Folders

 		
 Listing Virtual Folders

 		
 Parameters

 		
 Response

 		
 Creating a virtual folder

 		
 Parameters

 		
 Response

 		
 Getting Virtual Folder Information

 		
 Parameters

 		
 Response

 		
 Deleting Virtual Folder

 		
 Parameters

 		
 Response

 		
 Listing Files in Virtual Folder

 		
 Parameters

 		
 Response

 		
 Uploading Files to Virtual Folder

 		
 Parameters

 		
 Response

 		
 Downloading Files from Virtual Folder

 		
 Parameters

 		
 Response

 		
 Deleting Files in Virtual Folder

 		
 Parameters

 		
 Response

 		
 Introduction

 		
 Basics of GraphQL

 		
 HTTP Request Convention

 		
 Field Naming Convention

 		
 Pagination Convention

 		
 Custom Scalar Types

 		
 Authentication

 		
 Versioning

 		
 KeyPair Management

 		
 Full Admin

 		
 Query Schema

 		
 Mutation Schema

 		
 Restricted Owner Access

 		
 Query Schema

 		
 Mutation Schema

 		
 Compute Session Monitoring

 		
 Full Admin

 		
 Query Schema

 		
 Restricted Owner Access

 		
 Query Schema

 		
 Virtual Folder Management

 		
 Full Admin

 		
 Query Schema

 		
 Restricted Owner Access

 		
 Query Schema

 		
 Statistics

 		
 Full Admin

 		
 Query Schema

 		
 Restricted Owner Access

 		
 Query Schema

 		
 Development Setup

 		
 Method 1: Automatic Installation

 		
 Prerequisites

 		
 Running the script

 		
 Resetting the environment

 		
 Method 2: Manual Installation

 		
 Requirement packages

 		
 Prepare containers for external daemons

 		
 Prepare Python 3.6+

 		
 Prepare dependent libraries

 		
 Prepare server-side source clones

 		
 Initialize databases and load fixtures

 		
 Prepare Kernel Images

 		
 Setting Linux capabilities to Python (Linux-only)

 		
 Running daemons from cloned sources

 		
 Prepare client-side source clones

 		
 Verifying Installation

 		
 Adding New REPL Kernels

 		
 Architecture Overview

 		
 Ingredients of Kernel Images

 		
 Writing Query Mode Kernels

 		
 Writing PTY Mode Kernels

 		
 Writing Custom Jail Policies

_images/0000001.png

_images/0000002.png

_static/down-p