
Backend.AI API Documentation
Release 20.03

Lablup Inc.

Aug 08, 2023

CONCEPTS

1 Table of Contents 3
1.1 Key Concepts . 3
1.2 API Overview . 5
1.3 FAQ . 5
1.4 Quickstart Guides . 6
1.5 Supplementary Guides . 9
1.6 Configure Autoscaling . 15
1.7 Upgrading from 20.03 to 20.09 . 15
1.8 Migrating from the Docker Hub to cr.backend.ai . 15
1.9 Client SDK Libraries and Tools . 17
1.10 API and Document Conventions . 17
1.11 Authentication . 19
1.12 Rate Limiting . 23
1.13 JSON Object References . 24
1.14 Introduction . 31
1.15 Session Management . 33
1.16 Service Ports (aka Service Proxies) . 37
1.17 Code Execution (Streaming) . 39
1.18 Code Execution (Query Mode) . 41
1.19 Code Execution (Batch Mode) . 46
1.20 Event Monitoring . 49
1.21 Virtual Folders . 52
1.22 Resource Presets . 61
1.23 Introduction . 63
1.24 Agent Monitoring . 65
1.25 Scaling Group Management . 66
1.26 Domain Management . 68
1.27 Group Management . 69
1.28 User Management . 71
1.29 Image Management . 72
1.30 Compute Session Monitoring . 74
1.31 Virtual Folder Management . 78
1.32 KeyPair Management . 79
1.33 KeyPair Resource Policy Management . 80
1.34 Resource Preset Management . 82
1.35 Development Setup . 83
1.36 Adding New Kernel Images . 88

2 Indices and tables 95

i

ii

Backend.AI API Documentation, Release 20.03

Latest API version: v5.20191215

Backend.AI is a hassle-free backend for AI model development and deployment. It runs arbitrary user codes safely in
resource-constrained environments, using Docker and our own sandbox wrapper.

It hosts various programming languages and runtimes, such as Python 2/3, R, PHP, C/C++, Java, Javascript, Julia,
Octave, Haskell, Lua and NodeJS, as well as AI-oriented libraries such as TensorFlow, Keras, Caffe, and MXNet.

CONCEPTS 1

Backend.AI API Documentation, Release 20.03

2 CONCEPTS

CHAPTER

ONE

TABLE OF CONTENTS

1.1 Key Concepts

Here we describe the key concepts that are required to understand and follow this documentation.

Fig. 1.1: The diagram of a typical multi-node Backend.AI server architecture

Fig. 1.1 shows a brief Backend.AI server-side architecture where the components are what you need to install and
configure.

Each border-connected group of components is intended to be run on the same server, but you may split them into
multiple servers or merge different groups into a single server as you need. For example, you can run separate servers
for the nginx reverse-proxy and the Backend.AI manager or run both on a single server. In the [[development setup]],
all these components run on a single PC such as your laptop.

1.1.1 Manager and Agents

Backend.AI manager is the central governor of the cluster. It accepts user requests, creates/destroys the sessions, and
routes code execution requests to appropriate agents and sessions. It also collects the output of sessions and responds
the users with them.

Backend.AI agent is a small daemon installed onto individual worker servers to control them. It manages and monitors
the lifecycle of kernel containers, and also mediates the input/output of sessions. Each agent also reports the resource
capacity and status of its server, so that the manager can assign new sessions on idle servers to load balance.

1.1.2 Compute sessions and Kernels

Backend.AI spawns compute sessions as the form of containers upon user API requests. Each compute session may
have one or more containers (distributed across different nodes), and we call those member containers “kernels”. Such
multi-container sessions are for distributed and parallel computation at large scales. The agent automatically pulls and
updates the kernel images if needed.

3

Backend.AI API Documentation, Release 20.03

1.1.3 Cluster Networking

The primary networking requirements are:

• The manager server (the HTTPS 443 port) should be exposed to the public Internet or the network that your
client can access.

• The manager, agents, and all other database/storage servers should reside at the same local private network
where any traffic between them are transparently allowed.

• For high-volume big-data processing, you may want to separate the network for the storage using a secondary
network interface on each server, such as Infiniband and RoCE adaptors.

1.1.4 Databases

Redis and PostgreSQL are used to keep track of liveness of agents and compute sessions (which may be composed of
one or more kernels). They also store user metadata such as keypairs and resource usage statistics.

1.1.5 Configuration Management

Most cluster-level configurations are stored in an etcd server or cluster. The etcd server is also used for service discov-
ery; when new agents boot up they register themselves to the cluster manager via etcd. For production deployments,
we recommend to use an etcd cluster composed of odd (3 or higher) number of nodes to keep high availability.

1.1.6 Virtual Folders

Fig. 1.2: A conceptual diagram of virtual folders when using two NFS servers as vfolder hosts

As shown in Fig. 1.2, Backend.AI abstracts network storages as “virtual folder”, which provides a cloud-like private
file storage to individual users. The users may create their own (one or more) virtual folders to store data files, libraries,
and program codes. Each vfolder (virtual folder) is created under a designated storage mount (called “vfolder hosts”).
Virtual folders are mounted into compute session containers at /home/work/{name} so that user programs have
access to the virtual folder contents like a local directory. As of Backend.AI v18.12, users may also share their own
virtual folders with other users in differentiated permissions such as read-only and read-write.

A Backend.AI cluster setup may use any filesystem that provides a local mount point at each node (including the
manager and agents) given that the filesystem contents are synchronized across all nodes. The only requirement is that
the local mount-point must be same across all cluster nodes (e.g., /mnt/vfroot/mynfs). Common setups may
use a centralized network storage (served via NFS or SMB), but for more scalability, one might want to use distributed
file systems such as CephFS and GlusterFS, or Alluxio that provides fast in-memory cache while backed by another
storage server/service such as AWS S3.

For a single-node setup, you may simply use an empty local directory.

4 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.2 API Overview

Backend.AI API v3 consists of two parts: User APIs and Admin APIs.

Warning: APIv3 breaks backward compatibility a lot, and we will primarily support v3 after June 2017. Please
upgrade your clients immediately.

1.2.1 API KeyPair Registration

For managed, best-experience service, you may register to our cloud version of Backend.AI API service instead of
installing it to your own machines. Simply create an account at cloud.backend.ai and generate a new API keypair. You
may also use social accounts for log-ins such as Twitter, Facebook, and GitHub.

An API keypair is composed of a 20-characters access key (AKIA...) and a 40-characters secret key, in a similar
form to AWS access keys.

Currently, the service is BETA: it is free of charge but each user is limited to have only one keypair and have up to 5
concurrent sessions for a given keypair. Keep you eyes on further announcements for upgraded paid plans.

1.2.2 Accessing Admin APIs

The admin APIs require a special keypair with the admin privilege:

• The public cloud service (api.backend.ai): It currently does not offer any admin privileges to the end-
users, as its functionality is already available via our management console at cloud.backend.ai.

• On-premise installation: You will get an auto-generated admin keypair during installation.

1.3 FAQ

vs. Notebooks

Product Role Problem and Solution
Apache Zeppelin, Jupyter
Notebook

Notebook-style document + code
frontends

Insecure host resource sharing

Backend.AI Pluggable backend to any frontends Built for multi-tenancy: scalable and better
isolation

vs. Orchestration Frameworks

Product Target Value
Amazon ECS, Kubernetes Long-running service dae-

mons
Load balancing, fault tolerance, incremental de-
ployment

Backend.AI Stateful compute sessions Low-cost high-density computation
Amazon Lambda, Azure Func-
tions

Stateless, light-weight func-
tions

Serverless, zero-management

1.2. API Overview 5

https://cloud.backend.ai
https://cloud.backend.ai

Backend.AI API Documentation, Release 20.03

vs. Big-data and AI Frameworks

Product Role Problem and Solution
TensorFlow, Apache Spark,
Apache Hive

Computation runtime Difficult to install, configure, and operate

Amazon ML, Azure ML, GCP
ML

Managed MLaaS Still complicated for scientists, too restrictive for en-
gineers

Backend.AI Host of computation
runtimes

Pre-configured, versioned, reproducible, customiz-
able (open-source)

(All product names and trade-marks are the properties of their respective owners.)

1.4 Quickstart Guides

1.4.1 Install from Source

This is the recommended way to install on most setups, for both development and production.

Note: For production deployments, we also recommend pinning specific releases when cloning or updating source
repositories.

Setting Up Manager and Agent (single node)

Prerequisites

For a standard installation:

• Ubuntu 16.04+ / CentOS 7.4+ / macOS 10.12+

– For Linux: sudo with access to the package manager (apt-get or yum)

– For macOS: homebrew with the latest Xcode Command Line tools.

• bash

• git

To enable CUDA (only supported in Ubuntu or CentOS):

• CUDA 8.0 or later (with compatible NVIDIA driver)

• nvidia-docker 1.0 or 2.0

6 Chapter 1. Table of Contents

https://brew.sh

Backend.AI API Documentation, Release 20.03

Running the Installer

Clone the meta repository first. For the best result, clone the branch of this repo that matches with the target server
branch you want to install. Inside the cloned working copy, scripts/install-dev.sh is the automatic single-
node installation script.

It provides the following options (check with --help):

• --python-version: The Python version to install.

• --install-path: The target directory where individual Backend.AI components are installed together as
subdirectories.

• --server-branch: The branch/tag used for the manager, agent, and common components.

• --client-branch: The branch/tag used for the client-py component.

• --enable-cuda: If specified, the installer will install the open-source version of CUDA plugin for the agent.

• --cuda-branch: The branch/tag used for the CUDA plugin.

With default options, the script will install a source-based single-node Backend.AI cluster as follows:

• The installer tries to install pyenv, the designated Python version, docker-compose, and a few libraries (e.g.,
libsnappy) automatically after checking their availability. If it encounters an error during installation, it will
show manual instructions and stop.

• It creates a set of Docker containers for Redis 5, PostgreSQL 9.6, and etcd 3.3 via docker-compose, with the
default credentials: The Redis and etcd is configured without authentication and PostgreSQL uses postgres
/ develove. We call these containers as “halfstack”.

• ./backend.ai-dev/{component} where components are manager, agent, common, client, and a few
others, using separate virtualenvs. They are all installed as “editable” so modifying the cloned sources takes
effects immediately.

• For convenience, when cd-ing into individual component directories, pyenv will activate the virtualenv auto-
matically for supported shells. This is configured via pyenv local command during installation.

• The default vfolder mount point is ./backend.ai/vfolder and the default vfolder host is local.

• The installer automatically populates the example fixtures (in the sample-configs directory of the manager
repository) for during the database initialization.

• It automatically updates the list of available Backend.AI kernel images from the public Docker Hub. It also
pulls a few frequently used images such as the base Python image.

• The manager and agent are NOT daemonized. You must run them by running scripts/
run-with-halfstack.sh python -m ... inside each component’s source clones. Those wrapper
scripts configure environment variables suitable for the default halfstack containers.

Verifying the Installation

Run the manager and agent as follows in their respective component directories:

• manager:

$ cd backend.ai-dev/manager
$ scripts/run-with-halfstack.sh python -m ai.backend.gateway.server

By default, it listens on the localhost’s 8080 port using the plain-text HTTP.

• agent:

1.4. Quickstart Guides 7

https://github.com/lablup/backend.ai
https://github.com/lablup/backend.ai-manager
https://github.com/lablup/backend.ai-manager

Backend.AI API Documentation, Release 20.03

$ cd backend.ai-dev/agent
$ scripts/run-with-halfstack.sh python -m ai.backend.agent.server \

--scratch-root=$(pwd)/scratches

Note: The manager and agent may be executed without the root privilege on both Linux and macOS. In Linux, the
installer sets extra capability bits to the Python executable so that the agent can manage cgroups and access the Docker
daemon.

If all is well, they will say “started” or “serving at . . . ”. You can also check their CLI options using --help option to
change service IP and ports or enable the debug mode.

To run a “hello world” example, you first need to configure the client using the following script:

env-local-admin.sh
export BACKEND_ENDPOINT=http://127.0.0.1:8080
export BACKEND_ACCESS_KEY=AKIAIOSFODNN7EXAMPLE
export BACKEND_SECRET_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

And then run the following inside the client directory. If you see similar console logs, your installation is now working:

$ cd backend.ai-dev/client-py
$ source env-local-admin.sh
$ backend.ai run --rm -c 'print("hello world")' python:3.6-ubuntu18.04
Session token prefix: fb05c73953

XXX [0] Session fb05c73953 is ready.
hello world
XXX [0] Execution finished. (exit code = 0)
XXX [0] Cleaned up the session.

Setting Up Additional Agents (multi-node)

Updating Manager Configuration for Multi-Nodes

Verifying the Installation

1.4.2 Install from Package (Enterprise Edition)

This is for enterprise customers who need self-contained prebuilt packages for private clusters.

Prerequisites

For a standard installation:

• Ubuntu 16.04+ / CentOS 7.4+

• sudo

• bash

• git

To enable CUDA:

• CUDA 9.0 or later (with compatible NVIDIA driver)

8 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

• nvidia-docker 1.0 or 2.0

Running the Installer

Verifying the Installation

1.5 Supplementary Guides

1.5.1 Install Docker

For platform-specific instructions, please consult the docker official documentation.

Alternative way of docker installation on Linux (Ubuntu, CentOS, . . .)

$ curl -fsSL https://get.docker.io | sh

type your password to install docker.

Run docker commands without sudo (required)

By default, you need sudo to execute docker commands. To do so without sudo, add yourself to the system docker
group.

$ sudo usermod -aG docker $USER

It will work after restarting your login session.

Install docker-compose (only for development/single-server setup)

You need to install docker-compose separately. Check out the official documentation.

Install nvidia-docker (only for GPU-enabled agents)

Check out the official repository for instructions.

On the clouds, we highly recommend using vendor-provided GPU-optimized instance types (e.g., p2/p3 series on
AWS) and GPU-optimized virtual machine images which include ready-to-use CUDA drivers and configurations.

Since Backend.AI’s kernel container images ship all the necessary libraries and 3rd-party computation packages, you
may choose the light-weight “base” image (e.g., Amazon Deep Learning Base AMI) instead of full-featured images
(e.g., Amazon Deep Learning Conda AMI).

1.5. Supplementary Guides 9

https://asciinema.org/a/dCkoIy27EwVvO6sVVXNaAWcCp
https://docs.docker.com/engine/installation/
https://docs.docker.com/compose/install/
https://github.com/NVIDIA/nvidia-docker

Backend.AI API Documentation, Release 20.03

1.5.2 Manually install CUDA at on-premise GPU servers

Please search for this topic on the Internet, as Linux distributions often provide their own driver packages and opti-
mized method to install CUDA.

To download the driver and CUDA toolkit directly from NVIDIA, visit here.

1.5.3 Let Backend.AI to utilize GPUs

If an agent server has properly configured nvidia-docker (ref: [[Install Docker]]) with working host-side drivers and
the agent’s Docker daemon has GPU-enabled kernel images, there is nothing to do special. Backend.AI tracks the
GPU capacity just like CPU cores and RAM, and uses that information to schedule and assign GPU-enabled kernels.

We highly recommend pyenv to install multiple Python versions side-by-side, which does not interfere with system-
default Pythons.

1.5.4 Install dependencies for building Python

Ubuntu

$ sudo apt-get update -y
$ sudo apt-get dist-upgrade -y
$ sudo apt-get install -y \
> build-essential git-core # for generic C/C++
→˓builds
> libreadline-dev libsqlite3-dev libssl-dev libbz2-dev tk-dev # for Python builds
> libzmq3-dev libsnappy-dev # for Backend.AI
→˓dependency builds

CentOS / RHEL

(TODO)

1.5.5 Install pyenv

NOTE: Change ~/.profile accroding to your shell/system (e.g., ~/.bashrc, ~/.bash_profile, ~/.
zshrc, . . .) – whichever loaded at startup of your shell!

$ git clone https://github.com/pyenv/pyenv.git ~/.pyenv
...
$ echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.profile
$ echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.profile
$ echo 'eval "$(pyenv init -)"' >> ~/.profile
$ exec $SHELL -l
$ pyenv # check installation
pyenv 1.2.0-6-g9619e6b
Usage: pyenv <command> [<args>]

(continues on next page)

10 Chapter 1. Table of Contents

https://developer.nvidia.com/cuda-downloads
https://github.com/pyenv/pyenv
https://asciinema.org/a/ow9AdNDqjGnkN5ky2dyxMaQmQ

Backend.AI API Documentation, Release 20.03

(continued from previous page)

Some useful pyenv commands are:
...

1.5.6 Install pyenv’s virtualenv plugin

$ git clone https://github.com/pyenv/pyenv-virtualenv.git ~/.pyenv/plugins/pyenv-
→˓virtualenv
...
$ echo 'eval "$(pyenv virtualenv-init -)"' >> ~/.profile
$ exec $SHELL -l
$ pyenv virtualenv # check installation
pyenv-virtualenv: no virtualenv name given.

1.5.7 Install Python via pyenv

Install Python 3.6 latest version.

Warning: Currently Python 3.7 is not supported yet.

$ pyenv install 3.6.6

1.5.8 Create a virtualenv using a specific Python version

Change myvenv to specific names required in other guide pages.

$ pyenv virtualenv 3.6.6 myvenv

1.5.9 Activate the virtualenv for the current shell

$ pyenv shell myvenv

1.5.10 Activate the virtualenv when your shell goes into a directory

$ cd some-directory
$ pyenv local myvenv

Note: pyenv local creates a hidden .python-version file at each directory specifying the Python version/virtualenv
recongnized by pyenv. Any pyenv-enabled shells will automagically activate/deactivate this version/virtualenv when
going in/out such directories.

1.5. Supplementary Guides 11

Backend.AI API Documentation, Release 20.03

1.5.11 Install monitoring and logging tools

The Backend.AI can use several 3rd-party monitoring and logging services. Using them is completely optional.

Guide variables

Prepare the values of the following variables before working with this page and replace their occurrences with the
values when you follow the guide.

Name Description
{DDAPIKEY} >The Datadog API key
{DDAPPKEY} The Datadog application key
{SENTRYURL} The private Sentry report URL

Install Datadog agent

Datadog is a 3rd-party service to monitor the server resource usage.

$ DD_API_KEY={DDAPIKEY} bash -c "$(curl -L https://raw.githubusercontent.com/DataDog/
→˓dd-agent/master/packaging/datadog-agent/source/install_agent.sh)"

Install Raven (Sentry client)

Raven is the official client package name of Sentry, which reports detailed contextual information such as stack and
package versions when an unhandled exception occurs.

$ pip install "raven>=6.1"

1.5.12 Prepare Database for Manager

Guide variables

Prepare the values of the following variables before working with this page and replace their occurrences with the
values when you follow the guide.

Name Description
{NS} The etcd namespace
{ETCDADDR} The etcd cluster address ({ETCDHOST}:{ETCDPORT}, localhost:8120 for de-

velopment setup)
{DBADDR} The PostgreSQL server address ({DBHOST}:{DBPORT}, localhost:8100 for

development setup)
{DBUSER} The database username (e.g., postgres for development setup)
{DBPASS} The database password (e.g., develove for development setup)
{STRGMOUNT} The path to a directory that the manager and all agents share together (e.g., a network-

shared storage mountpoint). Note that the path must be same across all the nodes that
run the manager and agents.
Development setup: Use an arbitrary empty directory where Docker containers can
also mount as volumes — e.g., Docker for Mac requires explicit configuration for
mountable parent folders.

12 Chapter 1. Table of Contents

https://www.datadoghq.com
https://sentry.io
https://docs.docker.com/docker-for-mac/#file-sharing
https://docs.docker.com/docker-for-mac/#file-sharing

Backend.AI API Documentation, Release 20.03

Load initial etcd data

$ cd backend.ai-manager

Copy sample-configs/image-metadata.yml and sample-configs/image-aliases.yml and edit
according to your setup.

$ cp sample-configs/image-metadata.yml image-metadata.yml
$ cp sample-configs/image-aliases.yml image-aliases.yml

By default you can pull the images listed in the sample via docker pull lablup/kernel-xxxx:tag(e.g.
docker pull lablup/kernel-python-tensorflow:latest for the latest tensorflow) as they are hosted
on the public Docker registry.

Load image registry metadata

(Instead of manually specifying environment variables, you may use scripts/run-with-halfstack.sh script
in a development setup.)

$ BACKEND_NAMESPACE={NS} BACKEND_ETCD_ADDR={ETCDADDR} \
> python -m ai.backend.manager.cli etcd update-images \
> -f image-metadata.yml

Load image aliases

$ BACKEND_NAMESPACE={NS} BACKEND_ETCD_ADDR={ETCDADDR} \
> python -m ai.backend.manager.cli etcd update-aliases \
> -f image-aliases.yml

Set the default storage mount for virtual folders

$ BACKEND_NAMESPACE={NS} BACKEND_ETCD_ADDR={ETCDADDR} \
> python -m ai.backend.manager.cli etcd put \
> volumes/_mount {STRGMOUNT}

Database Setup

Create a new database

In docker-compose based configurations, you may skip this step.

$ psql -h {DBHOST} -p {DBPORT} -U {DBUSER}

postgres=# CREATE DATABASE backend;
postgres=# \q

1.5. Supplementary Guides 13

https://asciinema.org/a/8vM2cEHEHQzCMaOummV4ruDAm

Backend.AI API Documentation, Release 20.03

Install database schema

Backend.AI uses alembic to manage database schema and its migration during version upgrades. First, localize the
sample config:

$ cp alembic.ini.sample alembic.ini

Modify the line where sqlalchemy.url is set. You may use the following shell command: (ensure that special
characters in your password are properly escaped)

$ sed -i'' -e 's!^sqlalchemy.url = .*$!sqlalchemy.url = postgresql://{DBUSER}:{DBPASS}
→˓@{DBHOST}:{DBPORT}/backend!' alembic.ini

$ python -m ai.backend.manager.cli schema oneshot head

example execution result

201x-xx-xx xx:xx:xx INFO alembic.runtime.migration [MainProcess] Context impl
→˓PostgresqlImpl.
201x-xx-xx xx:xx:xx INFO alembic.runtime.migration [MainProcess] Will assume
→˓transactional DDL.
201x-xx-xx xx:xx:xx INFO ai.backend.manager.cli.dbschema [MainProcess] Detected a
→˓fresh new database.
201x-xx-xx xx:xx:xx INFO ai.backend.manager.cli.dbschema [MainProcess] Creating
→˓tables...
201x-xx-xx xx:xx:xx INFO ai.backend.manager.cli.dbschema [MainProcess] Stamping
→˓alembic version to head...
INFO [alembic.runtime.migration] Context impl PostgresqlImpl.
INFO [alembic.runtime.migration] Will assume transactional DDL.
INFO [alembic.runtime.migration] Running stamp_revision -> f9971fbb34d9

NOTE: All sub-commands under “schema” uses alembic.ini to establish database connections.

Load initial fixtures

Edit ai/backend/manager/models/fixtures.py so that you have a randomized admin keypair.

Then pour it to the database:

$ python -m ai.backend.manager.cli \
> --db-addr={DBHOST}:{DBPORT} \
> --db-user={DBUSER} \
> --db-password={DBPASS}
> --db-name=backend \
> fixture populate example_keypair

example execution result

201x-xx-xx xx:xx:xx INFO ai.backend.manager.cli.fixture [MainProcess] populating
→˓fixture 'example_keypair'

14 Chapter 1. Table of Contents

http://alembic.zzzcomputing.com/en/latest/

Backend.AI API Documentation, Release 20.03

1.6 Configure Autoscaling

Autoscaling strategies may vary cluster by cluster. Here we introduce a brief summary of high-level guides. (More
details about configuring Backend.AI will follow soon.)

1.6.1 ASG (Auto-scaling Group)

AWS and other cloud providers offer auto-scaling groups so that they control the number of VM instances sharing the
same base image within certain limits depending on the VMs’ CPU utilization or other resource metrics. You could
use this model for Backend.AI, but we recommend some customization due to the following reasons:

• Backend.AI’s kernels are allocated a fixed and isolated amount of resources even when they do not use that
much. So simple resource metering may expose “how busy” the spawned kernels are but not “how many”
kernels are spwned. In the perspective of Backend.AI’s scheduler, the latter is much more important.

• Backend.AI tries to maintain low latency when spawning new compute sessions. This means that it requires to
keep a small number of VM instances to be at a “hot” ready state – maybe just running idle ones or stopped ones
for fast booting. If the cloud provider supports such fine-grained control, it is best to use their options. We are
currently under development of Backend.AI’s own fine-grained scaling.

• The Backend.AI scheduler treats GPUs as the first-class citizen like CPU cores and main memory for its capacity
planning. Traditional auto-scaling metrics often miss this, so you need to set up a custom metric using vendor-
specific ways.

1.7 Upgrading from 20.03 to 20.09

(TODO)

1.8 Migrating from the Docker Hub to cr.backend.ai

As of November 2020, the Docker Hub has begun to limit the retention time and the rate of pulls of public images.
Since Backend.AI uses a number of Docker images with variety of access frequencies, we decided to migrate to our
own container registry, https://cr.backend.ai.

It is strongly recommended to set a maintenance period if there are active users of the Backend.AI cluster to prevent
new session starts during migration. This registry migration does not affect existing running sessions, though the
Docker image removal in the agent nodes can only be done after terminating all existing containers started with the
old images and there will be brief disconnection of service ports as the manager requires to be restarted.

1. Update your Backend.AI installation to the latest version (manager 20.03.11 or 20.09.0b2) to get support for
Harbor v2 container registries.

2. Save the following JSON snippet as registry-config.json.

{
"config": {

"docker": {
"registry": {
"cr.backend.ai": {
"": "https://cr.backend.ai",
"type": "harbor2",
"project": "stable,community"

(continues on next page)

1.6. Configure Autoscaling 15

https://cr.backend.ai

Backend.AI API Documentation, Release 20.03

(continued from previous page)

}
}

}
}

}

3. Run the following using the manager CLI on one of the manager nodes:

$ sudo systemctl stop backendai-manager # stop the manager daemon (may differ by
→˓setup)
$ backend.ai mgr etcd put-json '' registry-config.json
$ backend.ai mgr etcd rescan-images cr.backend.ai
$ sudo systemctl start backendai-manager # start the manager daemon (may differ
→˓by setup)

• The agents will automatically pull the images since the image references are changed even when the new
images are actually same to the existing ones. It is recommended to pull the essential images by yourself
in the agents to avoid long waiting times when starting sessions using the docker pull command in
the agent nodes.

• Now the images are categorized with additional path prefix, such as stable and community. More
prefixes may be introduced in the future and some prefixes may be set only available to specific set of
users/user groups, with dedicated credentials.

For example, lablup/python:3.6-ubuntu18.04 is now referred as cr.backend.ai/
stable/python:3.6-ubuntu18.04.

• If you have configured image aliases, you need to udpate them manually as well, using the backend.ai
mgr etcd alias command. This does not affect existing sessions running with old aliases.

4. Update the allowed docker registries policy for each domain using the backend.ai mgr dbshell com-
mand. Remove “index.docker.io” from the existing values and replace “. . . ” below with your own domain names
and additional registries.

SELECT name, allowed_docker_registries FROM domains; -- check the current config
UPDATE domains SET allowed_docker_registries = '{cr.backend.ai,...}' WHERE name =
→˓'...';

5. Now you may start new sessions using the images from the new registry.

6. After terminating all existing sessions using the old images from the Docker Hub (i.e., images whose names
start with lablup/ prefix), remove the image metadata and registry configuration using the manager CLI:

$ backend.ai mgr etcd delete --prefix images/index.docker.io
$ backend.ai mgr etcd delete --prefix config/docker/registry/index.docker.io

7. Run docker rmi commands to clean up the pulled images in the agent nodes. (Automatic/managed removal
of images will be implemented in the future versions of Backend.AI)

16 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.9 Client SDK Libraries and Tools

We provide official client SDKs for popular programming languages that abstract the low-level REST/GraphQL APIs
via functional and object-oriented interfaces.

1.9.1 Python

Python is the most extensively supported client programming language. The SDK also includes the official command-
line interface.

• Documentation for Backend.AI Client SDK for Python

• Source repository for Backend.AI Client SDK for Python

1.9.2 Javascript

The Javascript SDK is for writing client apps on both NodeJS and web browsers. It is also used for our Atom/VSCode
plugins.

• Documentation for Backend.AI Client SDK for Javascript (under construction)

• Source repository for Backend.AI Client SDK for Javascript

1.9.3 Java

The Java SDK is used for implementing our IntelliJ/PyCharm plugins.

• Documentation for Backend.AI Client SDK for Java (under construction)

• Source repository for Backend.AI Client SDK for Java

1.9.4 PHP

• Documentation for Backend.AI Client SDK for PHP (under construction)

• Source repository for Backend.AI Client SDK for PHP (under construction)

1.10 API and Document Conventions

1.10.1 HTTP Methods

We use the standard HTTP/1.1 methods (RFC-2616), such as GET, POST, PUT, PATCH and DELETE, with some
additions from WebDAV (RFC-3253) such as REPORT method to send JSON objects in request bodies with GET
semantics.

If your client runs under a restrictive environment that only allows a subset of above methods, you may use the uni-
versal POST method with an extra HTTP header like X-Method-Override: REPORT, so that the Backend.AI
gateway can recognize the intended HTTP method.

1.9. Client SDK Libraries and Tools 17

https://client-py.docs.backend.ai/en/latest/index.html
https://github.com/lablup/backend.ai-client-py
https://github.com/lablup/backend.ai-client-js
https://github.com/lablup/backend.ai-client-java
https://github.com/lablup/backend.ai-client-php
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc3253

Backend.AI API Documentation, Release 20.03

1.10.2 Parameters in URI and JSON Request Body

The parameters with colon prefixes (e.g., :id) are part of the URI path and must be encoded using a proper URI-
compatible encoding schemes such as encodeURIComponent(value) in Javascript and urllib.parse.
quote(value, safe='~()*!.\'') in Python 3+.

Other parameters should be set as a key-value pair of the JSON object in the HTTP request body. The API server
accepts both UTF-8 encoded bytes and standard-compliant Unicode-escaped strings in the body.

1.10.3 HTTP Status Codes and JSON Response Body

The API responses always contain a root JSON object, regardless of success or failures.

For successful responses (HTTP status 2xx), the root object has a varying set of key-value pairs depending on the API.

For failures (HTTP status 4xx/5xx), the root object contains at least two keys: type which uniquely identifies the
failure reason as an URI and title for human-readable error messages. Some failures may return extra structured
information as additional key-value pairs. We use RFC 7807-style problem detail description returned in JSON of the
response body.

1.10.4 JSON Field Notation

Dot-separated field names means a nested object. If the field name is a pure integer, it means a list item.

Example Meaning
a The attribute a of the root object. (e.g., 123 at {"a": 123})
a.b The attribute b of the object a on the root. (e.g., 456 at {"a": {"b": 456}})
a.0 An item in the list a on the root. 0 means an arbitrary array index, not the specific item at

index zero. (e.g., any of 13, 57, 24, and 68 at {"a": [13, 57, 24, 68]})
a.0.b The attribute b of an item in the list a on the root. (e.g., any of 1, 2, and 3 at {"a":

[{"b": 1}, {"b": 2}, {"b": 3}]})

1.10.5 JSON Value Types

This documentation uses a type annotation style similar to Python’s typing module, but with minor intuitive differences
such as lower-cased generic type names and wildcard as asterisk * instead of Any.

The common types are array (JSON array), object (JSON object), int (integer-only subset of JSON number),
str (JSON string), and bool (JSON true or false). tuple and list are aliases to array. Optional values
may be omitted or set to null.

We also define several custom types:

Type Description
decimal Fractional numbers represented as str not to loose precision. (e.g., to express money

amounts)
slug Similar to str, but the values should contain only alpha-numeric characters, hyphens,

and underscores. Also, hyphens and underscores should have at least one alphanumeric
neighbor as well as cannot become the prefix or suffix.

datetime ISO-8601 timestamps in str, e.g., "YYY-mm-ddTHH:MM:SS.ffffff+HH:MM". It
may include an optional timezone information. If timezone is not included, the value is
assumed to be UTC. The sub-seconds parts has at most 6 digits (micro-seconds).

enum[*] Only allows a fixed/predefined set of possible values in the given parametrized type.

18 Chapter 1. Table of Contents

https://tools.ietf.org/html/rfc7807
https://docs.python.org/3/library/typing.html

Backend.AI API Documentation, Release 20.03

1.10.6 API Versioning

A version string of the Backend.AI API uses two parts: a major revision (prefixed with v) and minor release dates
after a dot following the major revision. For example, v23.20250101 indicates a 23rd major revision with a minor
release at January 1st in 2025.

We keep backward compatibility between minor releases within the same major version. Therefore, all API query
URLs are prefixed with the major revision, such as /v2/kernel/create. Minor releases may introduce new
parameters and response fields but no URL changes. Accessing unsupported major revision returns HTTP 404 Not
Found.

Changed in version v3.20170615: Version prefix in API queries are deprecated. (Yet still supported currently) For
example, now users should call /kernel/create rather than /v2/kernel/create.

A client must specify the API version in the HTTP request header named X-BackendAI-Version. To check the
latest minor release date of a specific major revision, try a GET query to the URL with only the major revision part
(e.g., /v2). The API server will return a JSON string in the response body containing the full version. When querying
the API version, you do not have to specify the authorization header and the rate-limiting is enforced per the client IP
address. Check out more details about Authentication and Rate Limiting.

Example version check response body:

{
"version": "v2.20170315"

}

1.11 Authentication

1.11.1 Access Tokens and Secret Key

To make requests to the API server, a client needs to have a pair of an API access key and a secret key. You may get
one from our cloud service or from the administrator of your Backend.AI cluster.

The server uses the API keys to identify each client and secret keys to verify integrity of API requests as well as to
authenticate clients.

Warning: For security reasons (to avoid exposition of your API access key and secret keys to arbitrary Internet
users), we highly recommend to setup a server-side proxy to our API service if you are building a public-facing
front-end service using Backend.AI.

For local deployments, you may create a master dummy pair in the configuration (TODO).

1.11. Authentication 19

https://cloud.backend.ai

Backend.AI API Documentation, Release 20.03

1.11.2 Common Structure of API Requests

HTTP Headers Values
Method GET / REPORT / POST / PUT / PATCH / DELETE
Query String If your access key has the administrator privilege, your client may optionally specify

other user’s access key as the owner_access_key parameter of the URL query
string (in addition to other API-specific ones if any) to change the scope of access key
applied to access and manipulation of keypair-specific resources such as kernels and
vfolders.
New in version v4.20190315.

Content-Type Always should be application/json
Authorization Signature information generated as the section Signing API Requests describes.
Date The date/time of the request formatted in RFC 8022 or ISO 8601. If no timezone is

specified, UTC is assumed. The deviation with the server-side clock must be within
15-minutes.

X-BackendAI-Date Same as Date. May be omitted if Date is present.
X-BackendAI-Version vX.yyymmdd where X is the major version and yyyymmdd is the minor release date

of the specified API version. (e.g., 20160915)
X-BackendAI-Client-TokenAn optional, client-generated random string to allow the server to distinguish repeated

duplicate requests. It is important to keep idempotent semantics with multiple retries
for intermittent failures. (Not implemented yet)

Body JSON-encoded request parameters

1.11.3 Common Structure of API Responses

HTTP Headers Values
Status code API-specific HTTP-standard status codes. Responses commonly used throughout all

APIs include 200, 201, 2014, 400, 401, 403, 404, 429, and 500, but not limited to.
Content-Type application/json and its variants (e.g., application/problem+json for

errors)
Link Web link headers specified as in RFC 5988. Only optionally used when returning a

collection of objects.
X-RateLimit-* The rate-limiting information (see Rate Limiting).
Body JSON-encoded results

20 Chapter 1. Table of Contents

https://tools.ietf.org/html/rfc5988

Backend.AI API Documentation, Release 20.03

1.11.4 Signing API Requests

Each API request must be signed with a signature. First, the client should generate a signing key derived from its API
secret key and a string to sign by canonicalizing the HTTP request.

Generating a signing key

Here is a Python code that derives the signing key from the secret key. The key is nestedly signed against the current
date (without time) and the API endpoint address.

import hashlib, hmac
from datetime import datetime

SECRET_KEY = b'abc...'

def sign(key, msg):
return hmac.new(key, msg, hashlib.sha256).digest()

def get_sign_key():
t = datetime.utcnow()
k1 = sign(SECRET_KEY, t.strftime('%Y%m%d').encode('utf8'))
k2 = sign(k1, b'your.sorna.api.endpoint')
return k2

Generating a string to sign

The string to sign is generated from the following request-related values:

• HTTP Method (uppercase)

• URI including query strings

• The value of Date (or X-BackendAI-Date if Date is not present) formatted in ISO 8601
(YYYYmmddTHHMMSSZ) using the UTC timezone.

• The canonicalized header/value pair of Host

• The canonicalized header/value pair of Content-Type

• The canonicalized header/value pair of X-BackendAI-Version

• The hex-encoded hash value of body as-is. The hash function must be same to the one given in the
Authorization header (e.g., SHA256).

To generate a string to sign, the client should join the above values using the newline ("\n", ASCII 10) character.
All non-ASCII strings must be encoded with UTF-8. To canonicalize a pair of HTTP header/value, first trim all
leading/trailing whitespace characters ("\n", "\r", " ", "\t"; or ASCII 10, 13, 32, 9) of its value, and join the
lowercased header name and the value with a single colon (":", ASCII 58) character.

The success example in Example Requests and Responses makes a string to sign as follows (where the newlines are
"\n"):

GET
/v2
20160930T01:23:45Z
host:your.sorna.api.endpoint
content-type:application/json

(continues on next page)

1.11. Authentication 21

Backend.AI API Documentation, Release 20.03

(continued from previous page)

x-sorna-version:v2.20170215
e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

In this example, the hash value e3b0c4... is generated from an empty string using the SHA256 hash function since
there is no body for GET requests.

Then, the client should calculate the signature using the derived signing key and the generated string with the hash
function, as follows:

import hashlib, hmac

str_to_sign = 'GET\n/v2...'
sign_key = get_sign_key() # see "Generating a signing key"
m = hmac.new(sign_key, str_to_sign.encode('utf8'), hashlib.sha256)
signature = m.hexdigest()

Attaching the signature

Finally, the client now should construct the following HTTP Authorization header:

Authorization: BackendAI signMethod=HMAC-SHA256, credential=<access-key>:<signature>

1.11.5 Example Requests and Responses

For the examples here, we use a dummy access key and secret key:

• Example access key: AKIAIOSFODNN7EXAMPLE

• Example secret key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Success example for checking the latest API version

GET /v2 HTTP/1.1
Host: your.sorna.api.endpoint
Date: 20160930T01:23:45Z
Authorization: BackendAI signMethod=HMAC-SHA256,
→˓credential=AKIAIOSFODNN7EXAMPLE:022ae894b4ecce097bea6eca9a97c41cd17e8aff545800cd696112cc387059cf
Content-Type: application/json
X-BackendAI-Version: v2.20170215

HTTP/1.1 200 OK
Content-Type: application/json
Content-Language: en
Content-Length: 31
X-RateLimit-Limit: 2000
X-RateLimit-Remaining: 1999
X-RateLimit-Reset: 897065

{
"version": "v2.20170215"

}

22 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

Failure example with a missing authorization header

GET /v2/kernel/create HTTP/1.1
Host: your.sorna.api.endpoint
Content-Type: application/json
X-BackendAI-Date: 20160930T01:23:45Z
X-BackendAI-Version: v2.20170215

HTTP/1.1 401 Unauthorized
Content-Type: application/problem+json
Content-Language: en
Content-Length: 139
X-RateLimit-Limit: 2000
X-RateLimit-Remaining: 1998
X-RateLimit-Reset: 834821

{
"type": "https://sorna.io/problems/unauthorized",
"title": "Unauthorized access",
"detail": "Authorization header is missing."

}

1.12 Rate Limiting

The API server imposes a rate limit to prevent clients from overloading the server. The limit is applied to the last N
minutes at ANY moment (N is 15 minutes by default).

For public non-authorized APIs such as version checks, the server uses the client’s IP address seen by the server to
impose rate limits. Due to this, please keep in mind that large-scale NAT-based deployments may encounter the rate
limits sooner than expected. For authorized APIs, it uses the access key in the authorization header to impose rate
limits. The rate limit includes both all successful and failed requests.

Upon a valid request, the HTTP response contains the following header fields to help the clients flow-control their
requests.

HTTP Headers Values
X-RateLimit-Limit The maximum allowed number of requests during the rate-limit window.
X-RateLimit-RemainingThe number of further allowed requests left for the moment.
X-RateLimit-Window The constant value representing the window size in seconds. (e.g., 900 means 15

minutes)
Changed in version v3.20170615: Deprecated X-RateLimit-Reset and transi-
tional X-Retry-After as we have implemented a rolling counter that measures
last 15 minutes API call counts at any moment.

When the limit is exceeded, further API calls will get HTTP 429 “Too Many Requests”. If the client seems to be
DDoS-ing, the server may block the client forever without prior notice.

1.12. Rate Limiting 23

Backend.AI API Documentation, Release 20.03

1.13 JSON Object References

1.13.1 Paging Query Object

It describes how many items to fetch for object listing APIs. If index exceeds the number of pages calculated by the
server, an empty list is returned.

Key Type Description
size int The number of items per page. If set zero or this object is entirely omitted, all items are

returned and index is ignored.
index int The page number to show, zero-based.

1.13.2 Paging Info Object

It contains the paging information based on the paging query object in the request.

Key Type Description
pages int The number of total pages.
count int The number of all items.

1.13.3 KeyPair Item Object

Key Type Description
accessKey slugThe access key part.
isActive boolIndicates if the keypair is active or not.
totalQueriesint The number of queries done via this keypair. It may have a stale value.
created datetimeThe timestamp when the keypair was created.

1.13.4 KeyPair Properties Object

Key Type Description
isActive boolIndicates if the keypair is activated or not. If not activated, all authentication using the

keypair returns 401 Unauthorized. When changed from true to false, existing running
sessions continue to run but any requests to create new sessions are refused. (default: true)

concurrecy int The maximum number of concurrent sessions allowed for this keypair. (default: 5)
ML.
clusterSize

int Sets the number of instances clustered together when launching new machine learning ses-
sions. (default: 1)

ML.
instanceMemory

int
(MiB)

Sets the memory limit of each instance in the cluster launched for new machine learning
sessions. (default: 8)

The enterprise edition offers the following additional properties:

24 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

Key Type Description
cost.
automatic

boolIf set true, enables automatic cost optimization (BETA). With supported kernel types, it
automatically suspends or resize the sessions not to exceed the configured cost limit per
day. (default: false)

cost.
dailyLimit

str The string representation of money amount as decimals. The currency is fixed to USD.
(default: "50.00")

1.13.5 Service Port Object

Key Type Description
name slugThe name of service provided by the container. See also: Terminal Emulation
protocol str The type of network protocol used by the container service.

1.13.6 Batch Execution Query Object

Key Type Description
build str The bash command to build the main program from the given uploaded files.

If this field is not present, an empty string or null, it skips the build step.
If this field is a constant string "*", it will use a default build script provided by the kernel.
For example, the C kernel’s default Makefile adds all C source files under the working
directory and copmiles them into ./main executable, with commonly used C/link flags:
"-pthread -lm -lrt -ldl".

exec str The bash command to execute the main program.
If this is not present, an empty string, or null, the server only performs the build step and
options.buildLog is assumed to be true (the given value is ignored).

clean str The bash command to clean the intermediate files produced during the build phase. The
clean step comes before the build step if specified so that the build step can (re)start fresh.
If the field is not present, an empty string, or null, it skips the clean step.
Unlike the build and exec command, the default for "*" is do-nothing to prevent deletion
of other files unrelated to the build by bugs or mistakes.

Note: A client can distinguish whether the current output is from the build phase or the execution phase by whether
it has received build-finished status or not.

Note: All shell commands are by default executed under /home/work. The common environment is:

TERM=xterm
LANG=C.UTF-8
SHELL=/bin/bash
USER=work
HOME=/home/work

but individual kernels may have additional environment settings.

1.13. JSON Object References 25

Backend.AI API Documentation, Release 20.03

Warning: The shell does NOT have access to sudo or the root privilege. Though, some kernels may allow
installation of language-specific packages in the user directory.

Also, your build script and the main program is executed inside Backend.AI Jail, meaning that some system calls
are blocked by our policy. Since ptrace syscall is blocked, you cannot use native debuggers such as gdb.

This limitation, however, is subject to change in the future.

Example:

{
"build": "gcc -Wall main.c -o main -lrt -lz",
"exec": "./main"

}

1.13.7 Execution Result Object

Key Type Description
runId str The user-provided run identifier. If the user has NOT provided it, this will be set by the API

server upon the first execute API call. In that case, the client should use it for the subsequent
execute API calls during the same run.

status enum[str]One of "continued", "waiting-input", "finished", "clean-finished",
"build-finished", or "exec-timeout". See more details at Code Execution
Model.

exitCode int
|
null

The exit code of the last process. This field has a valid value only when the status is
"finished", "clean-finished" or "build-finished". Otherwise it is set to
null.
For batch-mode kernels and query-mode kernels without global context support,
exitCode is the return code of the last executed child process in the kernel. In the ex-
ecution step of a batch mode run, this is always 127 (a UNIX shell common practice for
“command not found”) when the build step has failed.
For query-mode kernels with global context support, this value is always zero, regardless
of whether the user code has caused an exception or not.
A negative value (which cannot happen with normal process termination) indicates a
Backend.AI-side error.

console list[object]A list of Console Item Object.
options objectAn object containing extra display options. If there is no options indicated by the kernel,

this field is null. When result.status is "waiting-input", it has a boolean
field is_password so that you could use different types of text boxes for user inputs.

files list[object]A list of Execution Result File Object that represents files generated in /home/work/.
output directory of the container during the code execution .

26 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.13.8 Console Item Object

Key Type Description
(root) [enum,

*]

A tuple of the item type and the item content. The type may be "stdout", "stderr",
and others.
See more details at Handling Console Output.

1.13.9 Execution Result File Object

Key Type Description
name str The name of a created file after execution.
url str The URL of a create file uploaded to AWS S3.

1.13.10 Container Stats Object

Key Type Description
cpu_used int

(msec)
The total time the kernel was running.

mem_max_bytesint
(Byte)

The maximum memory usage.

mem_cur_bytesint
(Byte)

The current memory usage.

net_rx_bytesint
(Byte)

The total amount of received data through network.

net_tx_bytesint
(Byte)

The total amount of transmitted data through network.

io_read_bytesint
(Byte)

The total amount of received data from IO.

io_write_bytesint
(Byte)

The total amount of transmitted data to IO.

io_max_scratch_sizeint
(Byte)

Currently not used field.

io_write_bytesint
(Byte)

Currently not used field.

1.13. JSON Object References 27

Backend.AI API Documentation, Release 20.03

1.13.11 Creation Config Object

Key Type Description
environ objectA dictionary object specifying additional environment variables. The values must be

strings.
mounts list[str]An optional list of the name of virtual folders that belongs to the current API key. These

virtual folders are mounted under /home/work. For example, if the virtual folder name
is abc, you can access it on /home/work/abc.
If the name contains a colon in the middle, the second part of the string indicates the alias
location in the kernel’s file system which is relative to /home/work.
You may mount up to 5 folders for each session.

clusterSize int The number of instances bundled for this session.
resources Re-

source
Slot
Ob-
ject

The resource slot specification for each container in this session.
New in version v4.20190315.

instanceMemoryint
(MiB)

The maximum memory allowed per instance. The value is capped by the per-kernel image
limit. Additional charges may apply on the public API service.
Deprecated since version v4.20190315.

instanceCoresint The number of CPU cores. The value is capped by the per-kernel image limit. Additional
charges may apply on the public API service.
Deprecated since version v4.20190315.

instanceGPUsfloatThe fraction of GPU devices (1.0 means a whole device). The value is capped by the per-
kernel image limit. Additional charges may apply on the public API service.
Deprecated since version v4.20190315.

28 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.13.12 Resource Slot Object

Key Type Description
cpu str

|
int

The number of CPU cores.

mem str
|
int

The amount of main memory in bytes. When the slot object is used as an input to an API,
it may be represented as binary numbers using the binary scale suffixes such as k, m, g, t,
p, e, z, and y, e.g., “512m”, “512M”, “512MiB”, “64g”, “64G”, “64GiB”, etc. When the
slot object is used as an output of an API, this field is always represented in the unscaled
number of bytes as strings.

Warning: When parsing this field as JSON, you must check
whether your JSON library or the programming language
supports large integers. For instance, most modern Javascript
engines support up to 253 − 1 (8 PiB – 1) which is often
defined as the Number.MAX_SAFE_INTEGER constant.
Otherwise you need to use a third-party big number calcula-
tion library. To prevent unexpected side-effects, Backend.AI
always returns this field as a string.

cuda.
device

str
|
int

The number of CUDA devices. Only available when the server is configured to use the
CUDA agent plugin.

cuda.
shares

str The virtual share of CUDA devices represented as fractional decimals. Only available when
the server is configured to use the CUDA agent plugin with the fractional allocation mode
(enterprise edition only).

tpu.
device

str
|
int

The number of TPU devices. Only available when the server is configured to use the TPU
agent plugin (cloud edition only).

(others) str More resource slot types may be available depending on the server configuration and agent
plugins. There are two types for an arbitrary slot: “count” (the default) and “bytes”.
For “count” slots, you may put arbitrary positive real number there, but fractions may be
truncated depending on the plugin implementation.
For “bytes” slots, its interpretation and representation follows that of the mem field.

1.13.13 Resource Preset Object

Key Type Description
name str The name of this preset.
resource_slotsRe-

source
Slot
Ob-
ject

The pre-configured combination of resource slots. If it contains slot types that are not cur-
rently used/activated in the cluster, they will be removed when returned via /resource/*
REST APIs.

shared_memoryint
(Byte)

The pre-configured shared memory size. Client can send humanized strings like ‘2g’,
‘128m’, ‘534773760’, etc, and they will be automatically converted into bytes.

1.13. JSON Object References 29

Backend.AI API Documentation, Release 20.03

1.13.14 Virtual Folder Creation Result Object

Key Type Description
id UUIDAn internally used unique identifier of the created vfolder. Currently it has no use in the

client-side.
name str The name of created vfolder, as the client has given.
host str The host name where the vfolder is created.
user UUIDThe user who has the ownership of this vfolder.
group UUIDThe group who is the owner of this vfolder.

New in version v4.20190615: user and group fields.

1.13.15 Virtual Folder List Item Object

Key Type Description
name str The human readable name set when created.
id slugThe unique ID of the folder.
host str The host name where this folder is located.
is_owner boolTrue if the client user is the owner of this folder. False if the folder is shared from a group

or another user.
permission enumThe requested user’s permission for this folder. (One of “ro”, “rw”, and “wd” which repre-

sents read-only, read-write, and write-delete respectively. Currently “rw” and “wd” has no
difference.)

user UUIDThe user ID if the owner of this item is a user vfolder. Otherwise, null.
group UUIDThe group ID if the owner of this item is a group vfolder. Otherwise, null.
type enumThe owner type of vfolder. One of “user” or “group”.

New in version v4.20190615: user, group, and type fields.

1.13.16 Virtual Folder Item Object

Key Type Description
name str The human readable name set when created.
id UUIDThe unique ID of the folder.
host str The host name where this folder is located.
is_owner boolTrue if the client user is the owner of this folder. False if the folder is shared from a group

or another user.
num_files int The number of files in this folder.
permission enumThe requested user’s permission for this folder.
created_at datetimeThe date and time when the folder is created.
last_used datetimeThe date adn time when the folder is last used.
user UUIDThe user ID if the owner of this item is a user. Otherwise, null.
group UUIDThe group ID if the owner of this item is a group. Otherwise, null.
type enumThe owner type of vfolder. One of “user” or “group”.

New in version v4.20190615: user, group, and type fields.

30 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.13.17 Virtual Folder File Object

Key Type Description
filename str The filename.
mode int The file’s mode (permission) bits as an integer.
size int The file’s size.
ctime int The timestamp when the file is created.
mtime int The timestamp when the file is last modified.
atime int The timestamp when the file is last accessed.

1.13.18 Virtual Folder Invitation Object

Key Type Description
id UUIDThe unique ID of the invitation. Use this when making API requests referring this invitation.
inviter str The inviter’s user ID (email) of the invitation.
permission str The permission that the invited user will have.
state str The current state of the invitation.
vfolder_id UUIDThe unique ID of the vfolder where the user is invited.
vfolder_namestr The name of the vfolder where the user is invited.

Key Type Description
content str The retrieved content (multi-line string) of fstab.
node str The node type, either “agent” or “manager.
node_id str The node’s unique ID.

New in version v4.20190615.

1.14 Introduction

Backend.AI User API is for running instant compute sessions at scale in clouds or on-premise clusters.

1.14.1 Code Execution Model

The core of the user API is the execute call which allows clients to execute user-provided codes in isolated compute
sessions (aka kernels). Each session is managed by a kernel runtime, whose implementation is language-specific. A
runtime is often a containerized daemon that interacts with the Backend.AI agent via our internal ZeroMQ protocol. In
some cases, kernel runtimes may be just proxies to other code execution services instead of actual executor daemons.

Inside each compute session, a client may perform multiple runs. Each run is for executing different code snippets
(the query mode) or different sets of source files (the batch mode). The client often has to call the execute API
multiple times to finish a single run. It is completely legal to mix query-mode runs and batch-mode runs inside the
same session, given that the kernel runtime supports both modes.

To distinguish different runs which may be overlapped, the client must provide the same run ID to all execute calls
during a single run. The run ID should be unique for each run and can be an arbitrary random string. If the run ID is
not provided by the client at the first execute call of a run, the API server will assign a random one and inform it to the
client via the first response. Normally, if two or more runs are overlapped, they are processed in a FIFO order using

1.14. Introduction 31

Backend.AI API Documentation, Release 20.03

an internal queue. But they may be processed in parallel if the kernel runtime supports parallel processing. Note that
the API server may raise a timeout error and cancel the run if the waiting time exceeds a certain limit.

In the query mode, usually the runtime context (e.g., global variables) is preserved for next subsequent runs, but this
is not guaranteed by the API itself—it’s up to the kernel runtime implementation.

Fig. 1.3: The state diagram of a “run” with the execute API.

The execute API accepts 4 arguments: mode, runId, code, and options (opts). It returns an Execution Result
Object encoded as JSON.

Depending on the value of status field in the returned Execution Result Object, the client must perform another
subsequent execute call with appropriate arguments or stop. Fig. 1.3 shows all possible states and transitions between
them via the status field value.

If status is "finished", the client should stop.

If status is "continued", the client should make another execute API call with the code field set to an empty
string and the mode field set to "continue". Continuation happens when the user code runs longer than a few
seconds to allow the client to show its progress, or when it requires extra step to finish the run cycle.

If status is "clean-finished" or "build-finished" (this happens at the batch-mode only), the client
should make the same continuation call. Since cleanup is performed before every build, the client will always receive
"build-finished" after "clean-finished" status. All outputs prior to "build-finished" status return
are from the build program and all future outputs are from the executed program built. Note that even when the
exitCode value is non-zero (failed), the client must continue to complete the run cycle.

If status is "waiting-input", you should make another execute API call with the code field set to the user-
input text and the mode field set to "input". This happens when the user code calls interactive input() functions.
Until you send the user input, the current run is blocked. You may use modal dialogs or other input forms (e.g., HTML
input) to retrieve user inputs. When the server receives the user input, the kernel’s input() returns the given value.
Note that each kernel runtime may provide different ways to trigger this interactive input cycle or may not provide at
all.

When each call returns, the console field in the Execution Result Object have the console logs captured since the
last previous call. Check out the following section for details.

1.14.2 Handling Console Output

The console output consists of a list of tuple pairs of item type and item data. The item type is one of "stdout",
"stderr", "media", "html", or "log".

When the item type is "stdout" or "stderr", the item data is the standard I/O stream outputs as (non-escaped)
UTF-8 string. The total length of either streams is limited to 524,288 Unicode characters per each execute API call;
all excessive outputs are truncated. The stderr often includes language-specific tracebacks of (unhandled) exceptions
or errors occurred in the user code. If the user code generates a mixture of stdout and stderr, the print ordering is
preserved and each contiguous block of stdout/stderr becomes a separate item in the console output list so that the
client user can reconstruct the same console output by sequentially rendering the items.

Note: The text in the stdout/stderr item may contain arbitrary terminal control sequences such as ANSI color codes
and cursor/line manipulations. It is the user’s job to strip out them or implement some sort of terminal emulation.

Tip: Since the console texts are not escaped, the client user should take care of rendering and escaping de-
pending on the UI implementation. For example, use <pre> element, replace newlines with
, or apply

32 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

white-space: pre CSS style when rendering as HTML. An easy way to do escape the text safely is to use
insertAdjacentText() DOM API.

When the item type is "media", the item data is a pair of the MIME type and the content data. If the MIME type
is text-based (e.g., "text/plain") or XML-based (e.g., "image/svg+xml"), the content is just a string that
represent the content. Otherwise, the data is encoded as a data URI format (RFC 2397). You may use backend.ai-
media library to handle this field in Javascript on web-browsers.

When the item type is "html", the item data is a partial HTML document string, such as a table to show tabular
data. If you are implementing a web-based front-end, you may use it directly to the standard DOM API, for instance,
consoleElem.insertAdjacentHTML(value, "beforeend").

When the item type is "log", the item data is a 4-tuple of the log level, the timestamp in the ISO 8601 format, the
logger name and the log message string. The log level may be one of "debug", "info", "warning", "error",
or "fatal". You may use different colors/formatting by the log level when printing the log message. Not every
kernel runtime supports this rich logging facility.

1.15 Session Management

Here are the API calls to create and manage compute sessions.

1.15.1 Creating Session

• URI: /session (/session/create also works for legacy)

• Method: POST

Creates a new session or returns an existing session, depending on the parameters.

1.15. Session Management 33

https://github.com/lablup/backend.ai-media
https://github.com/lablup/backend.ai-media

Backend.AI API Documentation, Release 20.03

Parameters

Parameter Type Description
image str The kernel runtime type in the form of the Docker image name and tag. For legacy, the API

also recognizes the lang field when image is not present.
Changed in version v4.20190315.

clientSessionTokenslugA client-provided session token, which must be unique among the currently non-terminated
sessions owned by the requesting access key. Clients may reuse the token if the previous
session with the same token has been terminated.
It may contain ASCII alphabets, numbers, and hyphens in the middle. The length must be
between 4 to 64 characters inclusively. It is useful for aliasing the session with a human-
friendly name.

enqueueOnly bool(optional) If set true, the API returns immediately after queueing the session creation re-
quest to the scheduler. Otherwise, the manager will wait until the session gets started actu-
ally. (default: false)
New in version v4.20190615.

maxWaitSecondsint (optional) Set the maximum duration to wait until the session starts after queued, in seconds.
If zero, the manager will wait indefinitely. (default: 0)
New in version v4.20190615.

reuseIfExistsbool(optional) If set true, the API returns without creating a new session if a session with the
same ID and the same image already exists and not terminated. In this case config options
are ignored. If set false but a session with the same ID and image exists, the manager returns
an error: “session already exists”. (default: true)
New in version v4.20190615.

group str (optional) The name of a user group (aka “project”) to launch the session within. (default:
"default")
New in version v4.20190615.

domain str (optional) The name of a domain to launch the session within (default: "default")
New in version v4.20190615.

config object(optional) A Creation Config Object to specify kernel configuration including resource re-
quirements. If not given, the kernel is created with the minimum required resource slots
defined by the target image.

tag str (optional) A per-session, user-provided tag for administrators to keep track of additional
information of each session, such as which sessions are from which users.

Example:

{
"image": "python:3.6-ubuntu18.04",
"clientSessionToken": "mysession-01",
"enqueueOnly": false,
"maxWaitSeconds": 0,
"reuseIfExists": true,
"domain": "default",
"group": "default",
"config": {
"clusterSize": 1,
"environ": {

"MYCONFIG": "XXX",
},
"mounts": ["mydata", "mypkgs"],
"resources": {

"cpu": "2",
(continues on next page)

34 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

(continued from previous page)

"mem": "4g",
"cuda.devices": "1",

}
},
"tag": "example-tag"

}

Response

HTTP Status Code Description
200 OK The session is already running and you are okay to reuse it.
201 Created The session is successfully created.
401 Invalid API parame-
ters

There are invalid or malformed values in the API parameters.

406 Not acceptable The requested resource limits exceed the server’s own limits.

Fields Type Values
sessId slugThe session ID used for later API calls, which is same to the value of

clientSessionToken. This will be random-generated by the server if
clientSessionToken is not provided.

status str The status of the created kernel. This is always "PENDING" if enqueueOnly is set
true. In other cases, it may be either "RUNNING" (normal case), "ERROR", or even
"TERMINATED" depending on what happens during session startup.
New in version v4.20190615.

servicePortslist[object]The list of Service Port Object. This field becomes an empty list if enqueueOnly is set
true, because the final service ports are determined when the session becomes ready after
scheduling.

Note: In most cases the service ports are same to what specified in the image metadata,
but the agent may add shared services for all sessions.

Changed in version v4.20190615.
created boolTrue if the session is freshly created.

Example:

{
"sessId": "mysession-01",
"status": "RUNNING",
"servicePorts": [
{"name": "jupyter", "protocol": "http"},
{"name": "tensorboard", "protocol": "http"}

],
"created": true

}

1.15. Session Management 35

Backend.AI API Documentation, Release 20.03

1.15.2 Getting Session Information

• URI: /session/:id

• Method: GET

Retrieves information about a session. For performance reasons, the returned information may not be real-time; usually
they are updated every a few seconds in the server-side.

Parameters

Parameter Type Description
:id slugThe session ID.

Response

HTTP Status Code Description
200 OK The information is successfully returned.
404 Not Found There is no such session.

Key Type Description
lang str The kernel’s programming language
age int

(msec)
The time elapsed since the kernel has started.

memoryLimit int
(KiB)

The memory limit of the kernel in KiB.

numQueriesExecutedint The number of times the kernel has been accessed.
cpuCreditUsedint

(msec)
The total time the kernel was running.

1.15.3 Destroying Session

• URI: /session/:id

• Method: DELETE

Terminates a session.

Parameters

Parameter Type Description
:id slugThe session ID.

36 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

Response

HTTP Status Code Description
204 No Content The session is successfully destroyed.
404 Not Found There is no such session.

Key Type Description
stats objectThe Container Stats Object of the kernel when deleted.

1.15.4 Restarting Session

• URI: /session/:id

• Method: PATCH

Restarts a session. The idle time of the session will be reset, but other properties such as the age and CPU credit will
continue to accumulate. All global states such as global variables and modules imports are also reset.

Parameters

Parameter Type Description
:id slugThe session ID.

Response

HTTP Status Code Description
204 No Content The session is successfully restarted.
404 Not Found There is no such session.

1.16 Service Ports (aka Service Proxies)

The service ports API provides WebSocket-based authenticated and encrypted tunnels to network-facing services
(“container services”) provided by the kernel container. The main advantage of this feature is that all application-
specific network traffic are wrapped as a standard WebSocket API (no need to open extra ports of the manager). It also
hides the container from the client and the client from the container, offerring an extra level of security.

Fig. 1.4: The diagram showing how tunneling of TCP connections via WebSockets works.

As Fig. 1.4 shows, all TCP traffic to a container service could be sent to a WebSocket connection to the following
API endpoints. A single WebSocket connection corresponds to a single TCP connection to the service, and there
may be multiple concurrent WebSocket connections to represent multiple TCP connections to the service. It is the
client’s responsibility to accept arbitrary TCP connections from users (e.g., web browsers) with proper authorization
for multi-user setups and wrap those as WebSocket connections to the following APIs.

When the first connection is initiated, the Backend.AI Agent running the designated kernel container signals the kernel
runner daemon in the container to start the designated service. It shortly waits for the in-container port opening and

1.16. Service Ports (aka Service Proxies) 37

Backend.AI API Documentation, Release 20.03

then delivers the first packet to the service. After initialization, all WebSocket payloads are delivered back and forth
just like normal TCP packets. Note that the WebSocket message type must be BINARY.

The container service will see the packets from the manager and it never knows the real origin of packets unless the
service-level protocol enforces to state such client-side information. Likewise, the client never knows the container’s
IP address (though the port numbers are included in service port objects returned by the session creation API).

Note: Currently non-TCP (e.g., UDP) services are not supported.

1.16.1 Service Proxy (HTTP)

• URI: /stream/kernel/:id/httpproxy?app=:service

• Method: GET upgraded to WebSockets

The service proxy API allows clients to directly connect to service daemons running inside compute sessions, such as
Jupyter and TensorBoard.

The service name should be taken from the list of service port objects returned by the session creation API.

New in version v4.20181215.

Parameters

Parameter Type Description
:id slugThe kernel ID.
:service slugThe service name to connect.

1.16.2 Service Proxy (TCP)

• URI: /stream/kernel/:id/tcpproxy?app=:service

• Method: GET upgraded to WebSockets

This is the TCP version of service proxy, so that client users can connect to native services running inside compute
sessions, such as SSH.

The service name should be taken from the list of service port objects returned by the session creation API.

New in version v4.20181215.

Parameters

Parameter Type Description
:id slugThe kernel ID.
:service slugThe service name to connect.

38 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.17 Code Execution (Streaming)

The streaming mode provides a lightweight and interactive method to connect with the session containers.

1.17.1 Code Execution

• URI: /stream/session/:id/execute

• Method: GET upgraded to WebSockets

This is a real-time streaming version of Code Execution (Batch Mode) and Code Execution (Query Mode) which uses
long polling via HTTP.

(under construction)

New in version v4.20181215.

1.17.2 Terminal Emulation

• URI: /stream/session/:id/pty?app=:service

• Method: GET upgraded to WebSockets

This endpoint provides a duplex continuous stream of JSON objects via the native WebSocket. Although WebSocket
supports binary streams, we currently rely on TEXT messages only conveying JSON payloads to avoid quirks in typed
array support in Javascript across different browsers.

The service name should be taken from the list of service port objects returned by the session creation API.

Note: We do not provide any legacy WebSocket emulation interfaces such as socket.io or SockJS. You need to set up
your own proxy if you want to support legacy browser users.

Changed in version v4.20181215: Added the service query parameter.

Parameters

Parameter Type Description
:id slugThe session ID.
:service slugThe service name to connect.

Client-to-Server Protocol

The endpoint accepts the following four types of input messages.

1.17. Code Execution (Streaming) 39

Backend.AI API Documentation, Release 20.03

Standard input stream

All ASCII (and UTF-8) inputs must be encoded as base64 strings. The characters may include control characters as
well.

{
"type": "stdin",
"chars": "<base64-encoded-raw-characters>"

}

Terminal resize

Set the terminal size to the given number of rows and columns. You should calculate them by yourself.

For instance, for web-browsers, you may do a simple math by measuring the width and height of a temporarily created,
invisible HTML element with the (monospace) font styles same to the terminal container element that contains only a
single ASCII character.

{
"type": "resize",
"rows": 25,
"cols": 80

}

Ping

Use this to keep the session alive (preventing it from auto-terminated by idle timeouts) by sending pings periodically
while the user-side browser is open.

{
"type": "ping",

}

Restart

Use this to restart the session without affecting the working directory and usage counts. Useful when your foreground
terminal program does not respond for whatever reasons.

{
"type": "restart",

}

40 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

Server-to-Client Protocol

Standard output/error stream

Since the terminal is an output device, all stdout/stderr outputs are merged into a single stream as we see in real
terminals. This means there is no way to distinguish stdout and stderr in the client-side, unless your session applies
some special formatting to distinguish them (e.g., make all stderr otuputs red).

The terminal output is compatible with xterm (including 256-color support).

{
"type": "out",
"data": "<base64-encoded-raw-characters>"

}

Server-side errors

{
"type": "error",
"data": "<human-readable-message>"

}

1.18 Code Execution (Query Mode)

1.18.1 Executing Snippet

• URI: /session/:id

• Method: POST

Executes a snippet of user code using the specified session. Each execution request to a same session may have side-
effects to subsequent executions. For instance, setting a global variable in a request and reading the variable in another
request is completely legal. It is the job of the user (or the front-end) to gaurantee the correct execution order of
multiple interdependent requests. When the session is terminated or restarted, all such volatile states vanish.

Parameters

Parameter Type Description
:id slugThe session ID.
mode str A constant string "query".
code str A string of user-written code. All non-ASCII data must be encoded in UTF-8 or any format

acceptable by the session.
runId str A string of client-side unique identifier for this particular run. For more details about the

concept of a run, see Code Execution Model. If not given, the API server will assign a
random one in the first response and the client must use it for the same run afterwards.

Example:

1.18. Code Execution (Query Mode) 41

Backend.AI API Documentation, Release 20.03

{
"mode": "query",
"code": "print('Hello, world!')",
"runId": "5facbf2f2697c1b7"

}

Response

HTTP Status Code Description
200 OK The session has responded with the execution result. The response body contains a

JSON object as described below.

Fields Type Values
result objectExecution Result Object.

Note: Even when the user code raises exceptions, such queries are treated as successful execution. i.e., The failure of
this API means that our API subsystem had errors, not the user codes.

Warning: If the user code tries to breach the system, causes crashs (e.g., segmentation fault), or runs too long
(timeout), the session is automatically terminated. In such cases, you will get incomplete console logs with
"finished" status earlier than expected. Depending on situation, the result.stderr may also contain
specific error information.

Here we demonstrate a few example returns when various Python codes are executed.

Example: Simple return.

print("Hello, world!")

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "finished",
"console": [

["stdout", "Hello, world!\n"]
],
"options": null

}
}

Example: Runtime error.

a = 123
print('what happens now?')
a = a / 0

{
"result": {

(continues on next page)

42 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

(continued from previous page)

"runId": "5facbf2f2697c1b7",
"status": "finished",
"console": [

["stdout", "what happens now?\n"],
["stderr", "Traceback (most recent call last):\n File \"<input>\", line 3, in

→˓<module>\nZeroDivisionError: division by zero"],
],
"options": null

}
}

Example: Multimedia output.

Media outputs are also mixed with other console outputs according to their execution order.

import matplotlib.pyplot as plt
a = [1,2]
b = [3,4]
print('plotting simple line graph')
plt.plot(a, b)
plt.show()
print('done')

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "finished",
"console": [

["stdout", "plotting simple line graph\n"],
["media", ["image/svg+xml", "<?xml version=\"1.0\" ..."]],
["stdout", "done\n"]

],
"options": null

}
}

Example: Continuation results.

import time
for i in range(5):

print(f"Tick {i+1}")
time.sleep(1)

print("done")

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "continued",
"console": [

["stdout", "Tick 1\nTick 2\n"]
],
"options": null

}
}

Here you should make another API query with the empty code field.

1.18. Code Execution (Query Mode) 43

Backend.AI API Documentation, Release 20.03

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "continued",
"console": [

["stdout", "Tick 3\nTick 4\n"]
],
"options": null

}
}

Again.

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "finished",
"console": [

["stdout", "Tick 5\ndone\n"],
],
"options": null

}
}

Example: User input.

print("What is your name?")
name = input(">> ")
print(f"Hello, {name}!")

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "waiting-input",
"console": [

["stdout", "What is your name?\n>> "]
],
"options": {

"is_password": false
}

}
}

You should make another API query with the code field filled with the user input.

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "finished",
"console": [

["stdout", "Hello, Lablup!\n"]
],
"options": null

}
}

44 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.18.2 Auto-completion

• URI: /session/:id/complete

• Method: POST

Parameters

Parameter Type Description
:id slugThe session ID.
code str A string containing the code until the current cursor position.
options.
post

str A string containing the code after the current cursor position.

options.
line

str A string containing the content of the current line.

options.
row

int An integer indicating the line number (0-based) of the cursor.

options.
col

int An integer indicating the column number (0-based) in the current line of the cursor.

Example:

{
"code": "pri",
"options": {
"post": "\nprint(\"world\")\n",
"line": "pri",
"row": 0,
"col": 3

}
}

Response

HTTP Status Code Description
200 OK The session has responded with the execution result. The response body contains a

JSON object as described below.

Fields Type Values
result list[str]An ordered list containing the possible auto-completion matches as strings. This may be

empty if the current session does not implement auto-completion or no matches have been
found.
Selecting a match and merging it into the code text are up to the front-end implementation.

Example:

{
"result": [
"print",
"printf"

(continues on next page)

1.18. Code Execution (Query Mode) 45

Backend.AI API Documentation, Release 20.03

(continued from previous page)

]
}

1.18.3 Interrupt

• URI: /session/:id/interrupt

• Method: POST

Parameters

Parameter Type Description
:id slugThe session ID.

Response

HTTP Status Code Description
204 No Content Sent the interrupt signal to the session. Note that this does not guarantee the effec-

tiveness of the interruption.

1.19 Code Execution (Batch Mode)

Some sessions provide the batch mode, which offers an explicit build step required for multi-module programs or
compiled programming languages. In this mode, you first upload files in prior to execution.

1.19.1 Uploading files

• URI: /session/:id/upload

• Method: POST

Parameters

Upload files to the session. You may upload multiple files at once using multi-part form-data encoding in the request
body (RFC 1867/2388). The uploaded files are placed under /home/work directory (which is the home directory
for all sessions by default), and existing files are always overwritten. If the filename has a directory part, non-existing
directories will be auto-created. The path may be either absolute or relative, but only sub-directories under /home/
work is allowed to be created.

Hint: This API is for uploading frequently-changing source files in prior to batch-mode execution. All files uploaded
via this API is deleted when the session terminates. Use virtual folders to store and access larger, persistent, static data
and library files for your codes.

46 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

Warning: You cannot upload files to mounted virtual folders using this API directly. However, you may
copy/move the generated files to virtual folders in your build script or the main program for later uses.

There are several limits on this API:

The maximum size of each file 1 MiB
The number of files per upload request 20

Response

HTTP Status Code Description
204 OK Success.
400 Bad Request Returned when one of the uploaded file exeeds the size limit or there are too many

files.

1.19.2 Executing with Build Step

• URI: /session/:id

• Method: POST

Parameters

Parameter Type Description
:id slugThe session ID.
mode enum[str]A constant string "batch".
code str Must be an empty string "".
runId str A string of client-side unique identifier for this particular run. For more details about the

concept of a run, see Code Execution Model. If not given, the API server will assign a
random one in the first response and the client must use it for the same run afterwards.

options objectBatch Execution Query Object.

Example:

{
"mode": "batch",
"options": "{batch-execution-query-object}",
"runId": "af9185c5fb0eacb2"

}

1.19. Code Execution (Batch Mode) 47

Backend.AI API Documentation, Release 20.03

Response

HTTP Status Code Description
200 OK The session has responded with the execution result. The response body contains a

JSON object as described below.

Fields Type Values
result objectExecution Result Object.

1.19.3 Listing Files

Once files are uploaded to the session or generated during the execution of the code, there is a need to identify what
files actually are in the current session. In this case, use this API to get the list of files of your compute sesison.

• URI: /session/:id/files

• Method: GET

Parameters

Parameter Type Description
:id slug The session ID.
path str Path inside the session (default: /home/work).

Response

HTTP Status Code Description
200 OK Success.
404 Not Found There is no such path.

Fields Type Values
files str Stringified json containing list of files.
folder_path str Absolute path inside session.
errors str Any errors occurred during scanning the specified path.

1.19.4 Downloading Files

Download files from your compute session.

The response contents are multiparts with tarfile binaries. Post-processing, such as unpacking and save them, should
be handled by the client.

• URI: /session/:id/download

• Method: GET

48 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

Parameters

Parameter Type Description
:id slug The session ID.
files list[str]File paths inside the session container to download. (maximum 5 files at once)

Response

HTTP Status Code Description
200 OK Success.

1.20 Event Monitoring

1.20.1 Session Lifecycle Events

• URI: /events/session

• Method: GET

Provides a continuous message-by-message JSON object stream of session lifecycles. It uses HTML5 Server-Sent
Events (SSE). Browser-based clients may use the EventSource API for convenience.

New in version v4.20190615: First properly implemented in this version, deprecating prior unimplemented interfaces.

Changed in version v5.20191215: The URI is changed from /stream/session/_/events to /events/
session.

Parameters

Parameter Type Description
sessionId slugThe session ID to monitor the lifecycle events. If set "*", the API will stream events from

all sessions visible to the client depending on the client’s role and permissions.
ownerAccessKeystr (optional) The access key of the owner of the specified session, since different access keys

(users) may share a same session ID for different session instances. You can specify this
only when the client is either a domain admin or a superadmin.

group str The group name to filter the lifecycle events. If set "*", the API will stream events from
all sessions visible to the client depending on the client’s role and permissions.

Responses

The response is a continuous stream of UTF-8 text lines following the text/event-stream format. Each event is
composed of the event type and data, where the data part is encoded as JSON.

Possible event names (more events may be added in the future):

1.20. Event Monitoring 49

https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/EventSource

Backend.AI API Documentation, Release 20.03

Event Name Description
session_preparingThe session is just scheduled from the job queue and got an agent resource allocation.
session_pullingThe session begins pulling the session image (usually from a Docker registry) to the scheduled

agent.
session_creatingThe session is being created as containers (or other entities in different agent backends).
session_startedThe session becomes ready to execute codes.
session_terminatedThe session has terminated.

When using the EventSource API, you should add event listeners as follows:

const sse = new EventSource('/events/session', {
withCredentials: true,

});
sse.addEventListener('session_started', (e) => {
console.log('session_started', JSON.parse(e.data));

});

Note: The EventSource API must be used with the session-based authentication mode (when the endpoint is a
console-server) which uses the browser cookies. Otherwise, you need to manually implement the event stream parser
using the standard fetch API running against the manager server.

The event data contains a JSON string like this (more fields may be added in the future):

Field Name Description
sessionId The source session ID.
ownerAccessKeyThe access key who owns the session.
reason A short string that describes why the event happened. This may be null or an empty string.
result Only present for session-terminated events. Only meaningful for batch-type sessions.

Either one of: "UNDEFINED", "SUCCESS", "FAILURE"

{
"sessionId": "mysession-01",
"ownerAccessKey": "MYACCESSKEY",
"reason": "self-terminated",
"result": "SUCCESS"

}

1.20.2 Background Task Progress Events

• URI: /events/background-task

• Method: GET for server-side events

New in version v5.20191215.

50 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

Parameters

Parameter Type Description
taskId UUIDThe background task ID to monitor the progress and completion.

Responses

The response is a continuous stream of UTF-8 text lines following text/event-stream format. Each event is
composed of the event type and data, where the data part is encoded as JSON. Possible event names (more events may
be added in the future):

Event Name Description
task_updatedUpdates for the progress. This can be generated many times during the background task execu-

tion.
task_done The background task is successfully completed.
tak_failed The background task has failed. Check the message field and/or query the error logs API for

error details.
task_cancelledThe background task is cancelled in the middle. Usually this means that the server is being

shutdown for maintenance.
server_closeThis event indicates explicit server-initiated close of the event monitoring connection, which

is raised just after the background task is either done/failed/cancelled. The client should not
reconnect because there is nothing more to monitor about the given task.

The event data (per-line JSON objects) include the following fields:

Field Name Type Description
task_id str The background task ID.
current_progressint The current progress value. Only meaningful for task_update events. If

total_progress is zero, this value should be ignored.
total_progressint The total progress count. Only meaningful for task_update events. The scale may be

an arbitrary positive integer. If the total count is not defined, this may be zero.
message str An optional human-readable message indicating what the task is doing. It may be null.

For example, it may contain the name of agent or scaling group being worked on for image
preload/unload APIs.

Check out the session lifecycle events API for example client-side Javascript implementations to handle text/
event-stream responses.

If you make the request for the tasks already finished, it may return either “404 Not Found” (the result is expired or
the task ID is invalid) or a single event which is one of task_done, task_fail, or task_cancel followed by
immediate response disconnection. Currently, the results for finished tasks may be archived up to one day (24 hours).

1.20. Event Monitoring 51

Backend.AI API Documentation, Release 20.03

1.21 Virtual Folders

Virtual folders provide access to shared, persistent, and reused files across different sessions.

You can mount virtual folders when creating new sessions, and use them like a plain directory on the local filesys-
tem. Of course, reads/writes to virtual folder contents may have degraded performance compared to the main scratch
directory (usually /home/work in most kernels) as internally it uses a networked file system.

Also, you might share your virtual folders with other users by inviting them and granting them proper permission.
Currently, there are three levels of permissions: read-only, read-write, read-write-delete. They are represented by
short strings, 'ro', 'rw', 'rd', respectively. The owner of a virtual folder have read-write-delete permission for
the folder.

Note: Currently the total size of a virtual folder is limited to 1 GiB and the number of files is limited to 1,000 files
during public beta, but these limits are subject to change in the future.

1.21.1 Listing Virtual Folders

Returns the list of virtual folders created by the current keypair.

• URI: /folders

• Method: GET

Parameters

None.

Response

HTTP Status Code Description
200 OK Success.

Fields Type Values
(root) list[object]A list of Virtual Folder List Item Object.

Example:

[
{ "name": "mydata", "id": "5da5f8e163dd4b86826d6b4db2b7b71a", "...": "..." },
{ "name": "sample01", "id": "0ecfab9e608c478f98d1734b02a54774", "...": "..." },

]

52 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.21.2 Listing Virtual Folder Hosts

Returns the list of available host names where the current keypair can create new virtual folders.

New in version v4.20190315.

• URI: /folders/_/hosts

• Method: GET

Parameters

None.

Response

HTTP Status Code Description
200 OK Success.

Fields Type Values
default str The default virtual folder host.
allowed list[str]The list of available virtual folder hosts.

Example:

{
"default": "nfs1",
"allowed": ["nfs1", "nfs2", "cephfs1"]

}

1.21.3 Creating a Virtual Folder

• URI: /folders

• Method: POST

Creates a virtual folder associated with the current API key.

Parameters

Parameter Type Description
name str The human-readable name of the virtual folder.
host str (optional) The name of the virtual folder host.

Example:

{
"name": "My Data",
"host": "nfs1"

}

1.21. Virtual Folders 53

Backend.AI API Documentation, Release 20.03

Response

HTTP Status Code Description
201 Created The kernel is successfully created.
400 Bad Request The name is malformed or duplicate with your existing virtual folders.
406 Not acceptable You have exceeded internal limits of virtual folders. (e.g., the maximum number of

folders you can have.)

Fields Type Values
id slugThe unique folder ID used for later API calls.
name str The human-readable name of the created virtual folder.
host str The name of the virtual folder host where the new folder is created.

Example:

{
"id": "aef1691db3354020986d6498340df13c",
"name": "My Data",
"host": "nfs1"

}

1.21.4 Getting Virtual Folder Information

• URI: /folders/:name

• Method: GET

Retrieves information about a virtual folder. For performance reasons, the returned information may not be real-time;
usually they are updated every a few seconds in the server-side.

Parameters

Parameter Type Description
name str The human-readable name of the virtual folder.

Response

HTTP Status Code Description
200 OK The information is successfully returned.
404 Not Found There is no such folder or you may not have proper permission to access the folder.

Fields Type Values
(root) objectVirtual Folder Item Object.

54 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.21.5 Deleting Virtual Folder

• URI: /folders/:name

• Method: DELETE

This immediately deletes all contents of the given virtual folder and makes the folder unavailable for future mounts.

Danger: If there are running kernels that have mounted the deleted virtual folder, those kernels are likely to break!

Warning: There is NO way to get back the contents once this API is invoked.

Parameters

Parameter Description
name The human-readable name of the virtual folder.

Response

HTTP Status Code Description
204 No Content The folder is successfully destroyed.
404 Not Found There is no such folder or you may not have proper permission to delete the folder.

1.21.6 Listing Files in Virtual Folder

Returns the list of files in a virtual folder associated with current keypair.

• URI: /folders/:name/files

• Method: GET

Parameters

Parameter Type Description
:name str The human-readable name of the virtual folder.
path str Path inside the virtual folder (default: root).

1.21. Virtual Folders 55

Backend.AI API Documentation, Release 20.03

Response

HTTP Status Code Description
200 OK Success.
404 Not Found There is no such path or you may not have proper permission to access the folder.

Fields Type Values
files list[object]List of Virtual Folder File Object

1.21.7 Uploading Multiple Files to Virtual Folder

Upload local files to a virtual folder associated with current keypair.

• URI: /folders/:name/upload

• Method: POST

Warning: If a file with the same name already exists in the virtual folder, it will be overwritten without warning.

Parameters

Parameter Type Description
:name str The human-readable name of the virtual folder.
(body) multipartA multi-part encoded file data which is composed of multiple occurrences of src

field. Each part must contain a valid filename and the content type is always assumed
as application/octet-stream.

Response

HTTP Status
Code

Description

201 Created Success.
400 Bad Request There already exists a file with duplicated name that cannot be overwritten in the virtual

folder.
404 Not Found There is no such folder or you may not have proper permission to write into folder.

1.21.8 Creating New Directory in Virtual Folder

Create a new directory in the virtual folder associated with current keypair. this API recursively creates parent direc-
tories if they does not exist.

• URI: /folders/:name/mkdir

• Method: POST

56 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

Warning: If a directory with the same name already exists in the virtual folder, it will be overwritten without
warning.

Parameters

Parameter Type Description
:name str The human-readable name of the virtual folder.
path str The relative path of a new folder to create inside the virtual folder.

Response

HTTP Status Code Description
201 Created Success.
400 Bad Request There already exists a file, not a directory, with duplicated name.
404 Not Found There is no such folder or you may not have proper permission to write into folder.

1.21.9 Downloading Single File from Virtual Folder

Download a single file from a virtual folder associated with the current keypair. This API does not perform any encod-
ing or compression but just outputs the raw file content as the response body, for simpler client-side implementation.

New in version v4.20190315.

• URI: /folders/:name/download_single

• Method: GET

Parameters

Parameter Type Description
:name str The human-readable name of the virtual folder.
file str A file path inside the virtual folder to download.

Response

HTTP Status Code Description
200 OK Success.
404 Not Found File not found or you may not have proper permission to access the folder.

Fields Type Values
(body) bytes The content of file.

1.21. Virtual Folders 57

Backend.AI API Documentation, Release 20.03

1.21.10 Downloading Multiple Files from Virtual Folder

Download files from a virtual folder associated with the current keypair.

The response contents are streamed as gzipped binaries (Content-Encoding: gzip) in a multi-part message
format. Clients may detect the total download size using X-TOTAL-PAYLOADS-LENGTH (all upper case) HTTP
header of the response in prior to reading/parsing the response body.

• URI: /folders/:name/download

• Method: GET

Parameters

Parameter Type Description
:name str The human-readable name of the virtual folder.
files list[str]File paths inside the virtual folder to download.

Response

HTTP Status Code Description
200 OK Success.
404 Not Found File not found or you may not have proper permission to access the folder.

Fields Type Values
(body) multipartThe gzipped content of files in the mixed multipart format.

1.21.11 Deleting Files in Virtual Folder

This deletes files inside a virtual folder.

Warning: There is NO way to get back the files once this API is invoked.

• URI: /folders/:name/delete_files

• Method: DELETE

Parameters

Parameter Type Description
:name str The human-readable name of the virtual folder.
files list[str]File paths inside the virtual folder to delete.
recursive bool Recursive option to delete folders if set to True. The default is False.

58 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

Response

HTTP Status
Code

Description

200 OK Success.
400 Bad Request You tried to delete a folder without setting recursive option as True.
404 Not Found There is no such folder or you may not have proper permission to delete the file in the

folder.

1.21.12 Listing Invitations for Virtual Folder

Returns the list of pending invitations that requested user received.

• URI: /folders/invitations/list

• Method: GET

Parameters

This API does not need any parameter.

Response

HTTP Status Code Description
200 OK Success.

Fields Type Values
invitations list[object]A list of Virtual Folder Invitation Object.

1.21.13 Creating an Invitation

Invite other users to share a virtual folder with proper permissions. If a user is already invited, then this API does not
create a new invitation or update the permission of the existing invitation.

• URI: /folders/:name/invite

• Method: POST

Parameters

Parameter Type Description
:name str The human-readable name of the virtual folder.
perm str The permission to grant to invitee.
user_ids list[slug]A list of user IDs to invite.

1.21. Virtual Folders 59

Backend.AI API Documentation, Release 20.03

Response

HTTP Status Code Description
200 OK Success.
400 Bad Request No invitee is given.
404 Not Found There is no invitation.

Fields Type Values
invited_ids list[slug]A list of invited user IDs.

1.21.14 Accepting an Invitation

Accept an invitation and receive permission to a virtual folder as in the invitation.

• URI: /folders/invitations/accept

• Method: POST

Parameters

Parameter Type Description
inv_id slug The unique invitation ID.
inv_ak bool The access key of invitee.

Response

HTTP Status Code Description
200 OK Success.
400 Bad Request The name of the target virtual folder is duplicate with your existing virtual folders.
404 Not Found There is no such invitation.

Fields Type Values
msg str Detail message for the invitation acceptance.

1.21.15 Rejecting an Invitation

Reject an invitation.

• URI: /folders/invitations/delete

• Method: DELETE

60 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

Parameters

Parameter Type Description
inv_id slug The unique invitation ID.

Response

HTTP Status Code Description
200 OK Success.
404 Not Found There is no such invitation.

Fields Type Values
msg str Detail message for the invitation deletion.

1.22 Resource Presets

Resource presets provide a simple storage for pre-configured resource slots and a dynamic checker for allocatability
of given presets before actually calling the kernel creation API.

To add/modify/delete resource presets, you need to use the admin GraphQL API.

New in version v4.20190315.

1.22.1 Listing Resource Presets

Returns the list of admin-configured resource presets.

• URI: /resource/presets

• Method: GET

Parameters

None.

Response

HTTP Status Code Description
200 OK The preset list is returned.

Fields Type Values
presets list[object]The list of Resource Preset Object

1.22. Resource Presets 61

Backend.AI API Documentation, Release 20.03

1.22.2 Checking Allocatability of Resource Presets

Returns current keypair and scaling-group’s resource limits in addition to the list of admin-configured resource presets.
It also checks the allocatability of the resource presets and adds allocatable boolean field to each preset item.

• URI: /resource/check-presets

• Method: POST

Parameters

None.

Response

HTTP Status Code Description
200 OK The preset list is returned.
401 Unauthorized The client is not authorized.

Fields Type Values
keypair_limitsRe-

source
Slot
Ob-
ject

The maximum amount of total resource slots allowed for the current access key. It may
contain infinity values as the string “Infinity”.

keypair_usingRe-
source
Slot
Ob-
ject

The amount of total resource slots used by the current access key.

keypair_remainingRe-
source
Slot
Ob-
ject

The amount of total resource slots remaining for the current access key. It may contain
infinity values as the string “Infinity”.

scaling_group_remainingRe-
source
Slot
Ob-
ject

The amount of total resource slots remaining for the current scaling group. It may contain
infinity values as the string “Infinity” if the server is configured for auto-scaling.

presets list[object]The list of Resource Preset Object, but with an extra boolean field allocatable which
indicates if the given resource slot is actually allocatable considering the keypair’s resrouce
limits and the scaling group’s current usage.

62 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.23 Introduction

Backend.AI’s Admin API is for developing in-house management consoles.

There are two modes of operation:

1. Full admin access: you can query all information of all users. It requires a privileged keypair.

2. Restricted owner access: you can query only your own information. The server processes your request in this
mode if you use your own plain keypair.

Warning: The Admin API only accepts authenticated requests.

Tip: To test and debug with the Admin API easily, try the proxy mode of the official Python client. It provides an
insecure (non-SSL, non-authenticated) local HTTP proxy where all the required authorization headers are attached
from the client configuration. Using this you do not have to add any custom header configurations to your favorite API
development tools such as GraphiQL.

1.23.1 Basics of GraphQL

The Admin API uses a single GraphQL endpoint for both queries and mutations.

https://api.backend.ai/admin/graphql

For more information about GraphQL concepts and syntax, please visit the following site(s):

• GraphQL official website

HTTP Request Convention

A client must use the POST HTTP method. The server accepts a JSON-encoded body with an object containing two
fields: query and variables, pretty much like other GraphQL server implementations.

Warning: Currently the API gateway does not support schema discovery which is often used by API development
tools such as Insomnia and GraphiQL.

Field Naming Convention

We do NOT automatically camel-case our field names. All field names follow the underscore style, which is common
in the Python world as our server-side framework uses Python.

1.23. Introduction 63

https://pypi.python.org/pypi/backend.ai-client
https://github.com/graphql/graphiql
http://graphql.org/

Backend.AI API Documentation, Release 20.03

Common Object Types

ResourceLimit represents a range (min, max) of specific resource slot (key). The max value may be the string
constant “Infinity” if not specified.

type ResourceLimit {
key: String
min: String
max: String

}

KVPair is used to represent a mapping data structure with arbitrary (runtime-determined) key-value pairs, in contrast
to other data types in GraphQL which have a set of predefined static fields.

type KVPair {
key: String
value: String

}

Pagination Convention

GraphQL itself does not enforce how to pass pagination information when querying multiple objects of the same type.

We use a pagination convention as described below:

interface Item {
id: UUID
other fields are defined by concrete types

}

interface PaginatedList(
offset: Integer!,
limit: Integer!,
some concrete types define ordering customization fields:
order_key: String,
order_asc: Boolean,
other optional filter condition may be added by concrete types

) {
total_count: Integer
items: [Item]

}

offset and limit are interpreted as SQL’s offset and limit clauses. For the first page, set the offset to zero and
the limit to the page size. The items field may contain from zero up to limit items. Use total_count field to
determine how many pages are there. Fields that support pagination is suffixed with _list in our schema.

64 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

Custom Scalar Types

• UUID: A hexademically formatted (8-4-4-4-12 alphanumeric characters connected via single hyphens) UUID
values represented as String

• DateTime: An ISO-8601 formatted date-time value represented as String

• BigInt: GraphQL’s integer is officially 32-bits only, so we define a “big integer” type which can represent
from -9007199254740991 (-253+1) to 9007199254740991 (253-1) (or, ±(8 PiB - 1 byte). This range is regarded
as a “safe” (i.e., can be compared without loosing precision) integer range in most Javascript implementations
which represent numbers in the IEEE-754 double (64-bit) format.

• JSONString: It contains a stringified JSON value, whereas the whole query result is already a JSON object.
A client must parse the value again to get an object representation.

Authentication

The admin API shares the same authentication method of the user API.

Versioning

As we use GraphQL, there is no explicit versioning. Check out the descriptions for each API for its own version
history.

1.24 Agent Monitoring

1.24.1 Query Schema

type Agent {
id: ID
status: String
status_changed: DateTime
region: String
scaling_group: String
available_slots: JSONString # ResourceSlot
occupied_slots: JSONString # ResourceSlot
addr: String
first_contact: DateTime
lost_at: DateTime
live_stat: JSONString
version: String
compute_plugins: JSONString
compute_containers(status: String): [ComputeContainer]

legacy fields
mem_slots: Int
cpu_slots: Float
gpu_slots: Float
tpu_slots: Float
used_mem_slots: Int
used_cpu_slots: Float
used_gpu_slots: Float
used_tpu_slots: Float

(continues on next page)

1.24. Agent Monitoring 65

Backend.AI API Documentation, Release 20.03

(continued from previous page)

cpu_cur_pct: Float
mem_cur_bytes: Float

}

type Query {
agent_list(
limit: Int!,
offset: Int!
order_key: String,
order_asc: Boolean,
scaling_group: String,
status: String,

): PaginatedList[Agent]
}

1.25 Scaling Group Management

1.25.1 Query Schema

type ScalingGroup {
name: String
description: String
is_active: Boolean
created_at: DateTime
driver: String
driver_opts: JSONString
scheduler: String
scheduler_opts: JSONString

}

type Query {
scaling_group(name: String): ScalingGroup
scaling_groups(name: String, is_active: Boolean): [ScalingGroup]
scaling_groups_for_domain(domain: String!, is_active: Boolean): [ScalingGroup]
scaling_groups_for_user_group(user_group: String!, is_active: Boolean):

→˓[ScalingGroup]
scaling_groups_for_keypair(access_key: String!, is_active: Boolean): [ScalingGroup]

}

1.25.2 Mutation Schema

input ScalingGroupInput {
description: String
is_active: Boolean
driver: String!
driver_opts: JSONString
scheduler: String!
scheduler_opts: JSONString

}

input ModifyScalingGroupInput {

(continues on next page)

66 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

(continued from previous page)

description: String
is_active: Boolean
driver: String
driver_opts: JSONString
scheduler: String
scheduler_opts: JSONString

}

type CreateScalingGroup {
ok: Boolean
msg: String
scaling_group: ScalingGroup

}

type ModifyScalingGroup {
ok: Boolean
msg: String

}

type DeleteScalingGroup {
ok: Boolean
msg: String

}

type AssociateScalingGroupWithDomain {
ok: Boolean
msg: String

}

type AssociateScalingGroupWithKeyPair {
ok: Boolean
msg: String

}

type AssociateScalingGroupWithUserGroup {
ok: Boolean
msg: String

}

type DisassociateAllScalingGroupsWithDomain {
ok: Boolean
msg: String

}

type DisassociateAllScalingGroupsWithGroup {
ok: Boolean
msg: String

}

type DisassociateScalingGroupWithDomain {
ok: Boolean
msg: String

}

type DisassociateScalingGroupWithKeyPair {
ok: Boolean
msg: String

(continues on next page)

1.25. Scaling Group Management 67

Backend.AI API Documentation, Release 20.03

(continued from previous page)

}

type DisassociateScalingGroupWithUserGroup {
ok: Boolean
msg: String

}

type Mutation {
create_scaling_group(name: String!, props: ScalingGroupInput!): CreateScalingGroup
modify_scaling_group(name: String!, props: ModifyScalingGroupInput!):

→˓ModifyScalingGroup
delete_scaling_group(name: String!): DeleteScalingGroup
associate_scaling_group_with_domain(domain: String!, scaling_group: String!):

→˓AssociateScalingGroupWithDomain
associate_scaling_group_with_user_group(scaling_group: String!, user_group: String!

→˓): AssociateScalingGroupWithUserGroup
associate_scaling_group_with_keypair(access_key: String!, scaling_group: String!):

→˓AssociateScalingGroupWithKeyPair
disassociate_scaling_group_with_domain(domain: String!, scaling_group: String!):

→˓DisassociateScalingGroupWithDomain
disassociate_scaling_group_with_user_group(scaling_group: String!, user_group:

→˓String!): DisassociateScalingGroupWithUserGroup
disassociate_scaling_group_with_keypair(access_key: String!, scaling_group: String!

→˓): DisassociateScalingGroupWithKeyPair
disassociate_all_scaling_groups_with_domain(domain: String!):

→˓DisassociateAllScalingGroupsWithDomain
disassociate_all_scaling_groups_with_group(user_group: String!):

→˓DisassociateAllScalingGroupsWithGroup
}

1.26 Domain Management

1.26.1 Query Schema

type Domain {
name: String
description: String
is_active: Boolean
created_at: DateTime
modified_at: DateTime
total_resource_slots: JSONString # ResourceSlot
allowed_vfolder_hosts: [String]
allowed_docker_registries: [String]
integration_id: String
scaling_groups: [String]

}

type Query {
domain(name: String): Domain
domains(is_active: Boolean): [Domain]

}

68 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.26.2 Mutation Schema

input DomainInput {
description: String
is_active: Boolean
total_resource_slots: JSONString # ResourceSlot
allowed_vfolder_hosts: [String]
allowed_docker_registries: [String]
integration_id: String

}

input ModifyDomainInput {
name: String
description: String
is_active: Boolean
total_resource_slots: JSONString # ResourceSlot
allowed_vfolder_hosts: [String]
allowed_docker_registries: [String]
integration_id: String

}

type CreateDomain {
ok: Boolean
msg: String
keypair: KeyPair

}

type ModifyDomain {
ok: Boolean
msg: String

}

type DeleteDomain {
ok: Boolean
msg: String

}

type Mutation {
create_domain(name: String!, props: DomainInput!): CreateDomain
modify_domain(name: String!, props: ModifyDomainInput!): ModifyDomain
delete_domain(name: String!): DeleteDomain

}

1.27 Group Management

1.27.1 Query Schema

type Group {
id: UUID
name: String
description: String
is_active: Boolean
created_at: DateTime
modified_at: DateTime

(continues on next page)

1.27. Group Management 69

Backend.AI API Documentation, Release 20.03

(continued from previous page)

domain_name: String
total_resource_slots: JSONString # ResourceSlot
allowed_vfolder_hosts: [String]
integration_id: String
scaling_groups: [String]

}

type Query {
group(id: String!): Group
groups(domain_name: String, is_active: Boolean): [Group]

}

1.27.2 Mutation Schema

input GroupInput {
description: String
is_active: Boolean
domain_name: String!
total_resource_slots: JSONString # ResourceSlot
allowed_vfolder_hosts: [String]
integration_id: String

}

input ModifyGroupInput {
name: String
description: String
is_active: Boolean
domain_name: String
total_resource_slots: JSONString # ResourceSlot
user_update_mode: String
user_uuids: [String]
allowed_vfolder_hosts: [String]
integration_id: String

}

type CreateGroup {
ok: Boolean
msg: String
keypair: KeyPair

}

type ModifyGroup {
ok: Boolean
msg: String

}

type DeleteGroup {
ok: Boolean
msg: String

}

type Mutation {
create_group(name: String!, props: GroupInput!): CreateGroup
modify_group(name: String!, props: ModifyGroupInput!): ModifyGroup
delete_group(name: String!): DeleteGroup

(continues on next page)

70 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

(continued from previous page)

}

1.28 User Management

1.28.1 Query Schema

type User {
uuid: UUID
username: String
email: String
password: String
need_password_change: Boolean
full_name: String
description: String
is_active: Boolean
created_at: DateTime
domain_name: String
role: String
groups: [UserGroup]

}

type UserGroup { # shorthand reference to Group
id: UUID
name: String

}

type Query {
user(domain_name: String, email: String): User
user_from_uuid(domain_name: String, user_id: String): User
users(domain_name: String, group_id: String, is_active: Boolean): [User]

}

1.28.2 Mutation Schema

input UserInput {
username: String!
password: String!
need_password_change: Boolean!
full_name: String
description: String
is_active: Boolean
domain_name: String!
role: String
group_ids: [String]

}

input ModifyUserInput {
username: String
password: String
need_password_change: Boolean
full_name: String

(continues on next page)

1.28. User Management 71

Backend.AI API Documentation, Release 20.03

(continued from previous page)

description: String
is_active: Boolean
domain_name: String
role: String
group_ids: [String]

}

type CreateKeyPair {
ok: Boolean
msg: String
keypair: KeyPair

}

type ModifyUser {
ok: Boolean
msg: String
user: User

}

type DeleteUser {
ok: Boolean
msg: String

}

type Mutation {
create_user(email: String!, props: UserInput!): CreateUser
modify_user(email: String!, props: ModifyUserInput!): ModifyUser
delete_user(email: String!): DeleteUser

}

1.29 Image Management

1.29.1 Query Schema

type Image {
name: String
humanized_name: String
tag: String
registry: String
digest: String
labels: [KVPair]
aliases: [String]
size_bytes: BigInt
resource_limits: [ResourceLimit]
supported_accelerators: [String]
installed: Boolean
installed_agents: [String] # super-admin only

}

type Query {
image(reference: String!): Image

images(

(continues on next page)

72 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

(continued from previous page)

is_installed: Boolean,
is_operation: Boolean,
domain: String, # only settable by super-admins
group: String,
scaling_group: String, # null to take union of all agents from allowed scaling

→˓groups
): [Image]

}

The image list is automatically filtered by: 1) the allowed docker registries of the current user’s domain, 2) whether at
least one agent in the union of all agents from the allowed scaling groups for the current user’s group has the image
or not. The second condition applies only when the value of group is given explicitly. If scaling_group is not
null, then only the agents in the given scaling group are checked for image availability instead of taking the union
of all agents from the allowed scaling groups.

If the requesting user is a super-admin, clients may set the filter conditions as they want. In this case, setting no
conditions works like v19.09 and prior versions.

New in version v5.20191215: domain, group, and scaling_group filters are added to the images root query
field.

Changed in version v5.20191215: images query returns the images currently usable by the requesting user as de-
scribed above. Previously, it returned all etcd-registered images.

1.29.2 Mutation Schema

type RescanImages {
ok: Boolean
msg: String
task_id: String

}

type PreloadImage {
ok: Boolean
msg: String
task_id: String

}

type UnloadImage {
ok: Boolean
msg: String
task_id: String

}

type ForgetImage {
ok: Boolean
msg: String

}

type AliasImage {
ok: Boolean
msg: String

}

type DealiasImage {

(continues on next page)

1.29. Image Management 73

Backend.AI API Documentation, Release 20.03

(continued from previous page)

ok: Boolean
msg: String

}

type Mutation {
rescan_images(registry: String!): RescanImages
preload_image(reference: String!, target_agents: String!): PreloadImage
unload_image(reference: String!, target_agents: String!): UnloadImage
forget_image(reference: String!): ForgetImage
alias_image(alias: String!, target: String!): AliasImage
dealias_image(alias: String!): DealiasImage

}

All these mutations are only allowed for super-admins.

The query parameter target_agents takes a special expression to indicate a set of agents.

The mutations that returns task_id may take an arbitrarily long time to complete. This means that getting the
response does not necessarily mean that the requested task is complete. To monitor the progress and actual completion,
clients should use the background task API using the task_id value.

New in version v5.20191215: forget_image, preload_image and unload_image are added to the root
mutation.

Changed in version v5.20191215: rescan_images now returns immediately and its completion must be monitored
using the new background task API.

1.30 Compute Session Monitoring

As of Backend.AI v20.03, compute sessions are composed of one or more containers, while interactions with sessions
only occur with the master container when using REST APIs. The GraphQL API allows users and admins to check
details of sessions and their belonging containers.

Changed in version v5.20191215.

1.30.1 Query Schema

ComputeSession provides information about the whole session, including user-requested parameters when creat-
ing sessions.

type ComputeSession {
identity and type
id: UUID
name: String
type: String
id: UUID
tag: String

image
image: String
registry: String
cluster_template: String # reserved for future release

ownership

(continues on next page)

74 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

(continued from previous page)

domain_name: String
group_name: String
group_id: UUID
user_email: String
user_id: UUID
access_key: String
created_user_email: String # reserved for future release
created_user_uuid: UUID # reserved for future release

status
status: String
status_changed: DateTime
status_info: String
created_at: DateTime
terminated_at: DateTime
startup_command: String
result: String

resources
resource_opts: JSONString
scaling_group: String
service_ports: JSONString # only available in master
mounts: List[String] # shared by all kernels
occupied_slots: JSONString # ResourceSlot; sum of belonging containers

statistics
num_queries: BigInt

owned containers (aka kernels)
containers: List[ComputeContainer] # full list of owned containers

pipeline relations
dependencies: List[ComputeSession] # full list of dependency sessions

}

The sessions may be queried one by one using compute_sesssion field on the root query schema, or as a paginated
list using compute_session_list.

type Query {
compute_session(
id: UUID!,

): ComputeSession

compute_session_list(
limit: Int!,
offset: Int!,
order_key: String,
order_asc: Boolean,
domain_name: String, # super-admin can query sessions in any domain
group_id: String, # domain-admins can query sessions in any group
access_key: String, # admins can query sessions of other users
status: String,

): PaginatedList[ComputeSession]
}

ComputeContainer provides information about individual containers that belongs to the given session. Note that
the client must assume that id is different from container_id, because agents may be configured to use non-

1.30. Compute Session Monitoring 75

Backend.AI API Documentation, Release 20.03

Docker backends.

Note: The container ID in the GraphQL queries and REST APIs are different from the actual Docker container
ID. The Docker container IDs can be queried using container_id field of ComputeContainer objects. If the
agents are configured to using non-Docker-based backends, then container_id may also be completely arbitrary
identifiers.

type ComputeContainer {
identity
id: UUID
role: String # "master" is reserved, other values are defined by cluster

→˓templates
hostname: String # used by sibling containers in the same session
session_id: UUID

image
image: String
registry: String

status
status: String
status_changed: DateTime
status_info: String
created_at: DateTime
terminated_at: DateTime

resources
agent: String # super-admin only
container_id: String
resource_opts: JSONString
NOTE: mounts are same in all containers of the same session.
occupied_slots: JSONString # ResourceSlot

statistics
live_stat: JSONString
last_stat: JSONString

}

In the same way, the containers may be queried one by one using compute_container field on the root query
schema, or as a paginated list using compute_container_list for a single session.

Note: The container ID of the master container of each session is same to the session ID.

type Query {
compute_container(
id: UUID!,

): ComputeContainer

compute_container_list(
limit: Int!,
offset: Int!,
session_id: UUID!,
role: String,

): PaginatedList[ComputeContainer]

(continues on next page)

76 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

(continued from previous page)

}

1.30.2 Query Example

query(
$limit: Int!,
$offset: Int!,
$ak: String,
$status: String,

) {
compute_session_list(
limit: $limit,
offset: $offset,
access_key: $ak,
status: $status,

) {
total_count
items {

id
name
type
user_email
status
status_info
status_updated
containers {

id
role
agent

}
}

}
}

API Parameters

Using the above GraphQL query, clients may send the following JSON object as the request:

{
"query": "...",
"variables": {
"limit": 10,
"offset": 0,
"ak": "AKIA....",
"status": "RUNNING"

}
}

1.30. Compute Session Monitoring 77

Backend.AI API Documentation, Release 20.03

API Response

{
"compute_session_list": {
"total_count": 1,
"items": [

{
"id": "12c45b55-ce3c-418d-9c58-223bbba307f1",
"name": "mysession",
"type": "interactive",
"user_email": "user@lablup.com",
"status": "RUNNING",
"status_info": null,
"status_updated": "2020-02-16T15:47:28.997335+00:00",
"containers": [
{
"id": "12c45b55-ce3c-418d-9c58-223bbba307f1",
"role": "master",
"agent": "i-agent01"

},
{

"id": "12c45b55-ce3c-418d-9c58-223bbba307f2",
"role": "slave",
"agent": "i-agent02"

},
{

"id": "12c45b55-ce3c-418d-9c58-223bbba307f3",
"role": "slave",
"agent": "i-agent03"

}
]

}
]

}
}

1.31 Virtual Folder Management

1.31.1 Query Schema

type VirtualFolder {
id: UUID
host: String
name: String
user: UUID
group: UUID
unmanaged_path: UUID
max_files: Int
max_size: Int
created_at: DateTime
last_used: DateTime
num_files: Int
cur_size: BigInt

}

(continues on next page)

78 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

(continued from previous page)

type Query {
vfolder_list(
limit: Int!,
offset: Int!,
order_key: String,
order_asc: Boolean,
domain_name: String,
group_id: String,
access_key: String,

): PaginatedList[VirtualFolder]
}

1.32 KeyPair Management

1.32.1 Query Schema

type KeyPair {
user_id: String
access_key: String
secret_key: String
is_active: Boolean
is_admin: Boolean
resource_policy: String
created_at: DateTime
last_used: DateTime
concurrency_used: Int
rate_limit: Int
num_queries: Int
user: UUID
ssh_public_key: String
vfolders: [VirtualFolder]
compute_sessions(status: String): [ComputeSession]

}

type Query {
keypair(domain_name: String, access_key: String): KeyPair
keypairs(domain_name: String, email: String, is_active: Boolean): [KeyPair]

}

1.32.2 Mutation Schema

input KeyPairInput {
is_active: Boolean
resource_policy: String
concurrency_limit: Int
rate_limit: Int

}

input ModifyKeyPairInput {
is_active: Boolean

(continues on next page)

1.32. KeyPair Management 79

Backend.AI API Documentation, Release 20.03

(continued from previous page)

is_admin: Boolean
resource_policy: String
concurrency_limit: Int
rate_limit: Int

}

type CreateKeyPair {
ok: Boolean
msg: String
keypair: KeyPair

}

type ModifyKeyPair {
ok: Boolean
msg: String

}

type DeleteKeyPair {
ok: Boolean
msg: String

}

type Mutation {
create_keypair(props: KeyPairInput!, user_id: String!): CreateKeyPair
modify_keypair(access_key: String!, props: ModifyKeyPairInput!): ModifyKeyPair
delete_keypair(access_key: String!): DeleteKeyPair

}

1.33 KeyPair Resource Policy Management

1.33.1 Query Schema

type KeyPairResourcePolicy {
name: String
created_at: DateTime
default_for_unspecified: String
total_resource_slots: JSONString # ResourceSlot
max_concurrent_sessions: Int
max_containers_per_session: Int
idle_timeout: BigInt
max_vfolder_count: Int
max_vfolder_size: BigInt
allowed_vfolder_hosts: [String]

}

type Query {
keypair_resource_policy(name: String): KeyPairResourcePolicy
keypair_resource_policies(): [KeyPairResourcePolicy]

}

80 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.33.2 Mutation Schema

input CreateKeyPairResourcePolicyInput {
default_for_unspecified: String!
total_resource_slots: JSONString!
max_concurrent_sessions: Int!
max_containers_per_session: Int!
idle_timeout: BigInt!
max_vfolder_count: Int!
max_vfolder_size: BigInt!
allowed_vfolder_hosts: [String]

}

input ModifyKeyPairResourcePolicyInput {
default_for_unspecified: String
total_resource_slots: JSONString
max_concurrent_sessions: Int
max_containers_per_session: Int
idle_timeout: BigInt
max_vfolder_count: Int
max_vfolder_size: BigInt
allowed_vfolder_hosts: [String]

}

type CreateKeyPairResourcePolicy {
ok: Boolean
msg: String
resource_policy: KeyPairResourcePolicy

}

type ModifyKeyPairResourcePolicy {
ok: Boolean
msg: String

}

type DeleteKeyPairResourcePolicy {
ok: Boolean
msg: String

}

type Mutation {
create_keypair_resource_policy(name: String!, props:

→˓CreateKeyPairResourcePolicyInput!): CreateKeyPairResourcePolicy
modify_keypair_resource_policy(name: String!, props:

→˓ModifyKeyPairResourcePolicyInput!): ModifyKeyPairResourcePolicy
delete_keypair_resource_policy(name: String!): DeleteKeyPairResourcePolicy

}

1.33. KeyPair Resource Policy Management 81

Backend.AI API Documentation, Release 20.03

1.34 Resource Preset Management

1.34.1 Query Schema

type ResourcePreset {
name: String
resource_slots: JSONString
shared_memory: BigInt

}

type Query {
resource_preset(name: String!): ResourcePreset
resource_presets(): [ResourcePreset]

}

1.34.2 Mutation Schema

input CreateResourcePresetInput {
resource_slots: JSONString
shared_memory: String

}

type CreateResourcePreset {
ok: Boolean
msg: String
resource_preset: ResourcePreset

}

input ModifyResourcePresetInput {
resource_slots: JSONString
shared_memory: String

}

type ModifyResourcePreset {
ok: Boolean
msg: String

}

type DeleteResourcePreset {
ok: Boolean
msg: String

}

type Mutation {
create_resource_preset(name: String!, props: CreateResourcePresetInput!):

→˓CreateResourcePreset
modify_resource_preset(name: String!, props: ModifyResourcePresetInput!):

→˓ModifyResourcePreset
delete_resource_preset(name: String!): DeleteResourcePreset

}

82 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.35 Development Setup

Currently Backend.AI is developed and tested under only *NIX-compatible platforms (Linux or macOS).

1.35.1 Method 1: Automatic Installation

For the ease of on-boarding developer experience, we provide an automated script that installs all server-side compo-
nents in editable states with just one command.

Prerequisites

Install the followings accordingly to your host operating system.

• pyenv and pyenv-virtualenv

• docker

• docker-compose

Note: In some cases, locale conflicts between the terminal client and the remote host may cause encoding errors
when installing Backend.AI components due to Unicode characters in README files. Please keep correct locale
configurations to prevent such errors.

Warning: In macOS, Homebrew offers its own pyenv and pyenv-virtualenv packages but we do not recommend
using them! Updating those packages and cleaning up via Homebrew will break your virtual environments as each
version uses different physical directories.

Our installer script will try to install pyenv automatically if not installed, but we do recommend installing them by
yourself as it may interfere with your shell configurations.

Running the script

$ wget https://raw.githubusercontent.com/lablup/backend.ai/master/scripts/install-dev.
→˓sh
$ chmod +x ./install-dev.sh
$./install-dev.sh

Note: The script may ask your root password in the middle to run sudo in Linux.

This installs a set of Backend.AI server-side components in the backend.ai-dev directory under the current work-
ing directory.

Inside the directory, there are manager, agent, common and a few other auxiliary directories. You can directly
modify the source codes inside them and re-launch the gateway and agent. The common directory is shared by
manager and agent so just editing sources there takes effects in the next launches of the gateway and agent.

At the end of execution, the script will show several command examples about launching the gateway and agent. It
also displays a unique random key called “environment ID” to distinguish a particular execution of this script so that
repeated execution does not corrupt your existing setups.

1.35. Development Setup 83

https://github.com/pyenv/pyenv
https://github.com/pyenv/pyenv-virtualenv
https://docs.docker.com/install/
https://docs.docker.com/compose/install/

Backend.AI API Documentation, Release 20.03

By default, the script pulls the docker images for our standard Python kernel and TensorFlow CPU-only kernel. To try
out other images, you have to pull them manually afterwards.

The script provides a set of command-line options. Check out them using -h / --help option.

Note: To install multiple instances of development environments using this script, you need to run the script at
different working directories because the backend.ai-dev directory name is fixed.

Also, you cannot run multiple gateways and agents from different environments at the same time because docker
container in different environments use the same TCP ports of the host system. Use docker-compose command
to stop the current environment and start another to switch between environments. Please do not forget to specify -p
<ENVID> option to docker-compose commands to distinguish different environments.

Resetting the environment

$ wget https://raw.githubusercontent.com/lablup/backend.ai/master/scripts/delete-dev.
→˓sh
$ chmod +x ./delete-dev.sh
$./delete-dev.sh --env <ENVID>

Note: The script may ask your root password in the middle to run sudo in Linux.

This will purge all docker resources related to the given environment ID and the backend.ai-dev directory under
the current working directory.

The script provides a set of command-line options. Check out them using -h / --help option.

Warning: Be aware that this script force-removes, without any warning, all contents of the backend.ai-dev
directory, which may contain your own modifications that is not yet pushed to a remote git repository.

1.35.2 Method 2: Manual Installation

Requirement packages

• PostgreSQL: 9.6

• etcd: v3.3.9

• redis: latest

84 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

Prepare containers for external daemons

First install an appropriate version of Docker (later than 2017.03 version) and docker-compose (later than 1.21). Check
out the Install Docker guide.

Note: In this guide, $WORKSPACE means the absolute path to an arbitrary working directory in your system.

To copy-and-paste commands in this guide, set WORKSPACE environment variable.

The directory structure would look like after finishing this guide:

• $WORKSPACE

– backend.ai

– backend.ai-manager

– backend.ai-agent

– backend.ai-common

– backend.ai-client-py

$ cd $WORKSPACE
$ git clone https://github.com/lablup/backend.ai
$ cd backend.ai
$ docker-compose -f docker-compose.halfstack.yml up -d
$ docker ps # you should see 3 containers running

This will create and start PostgreSQL, Redis, and a single-instance etcd containers. Note that PostgreSQL and Redis
uses non-default ports by default (5442 and 6389 instead of 5432 and 6379) to prevent conflicts with other application
development environments.

Prepare Python 3.6+

Check out Install Python via pyenv for instructions.

Create the following virtualenvs: venv-manager, venv-agent, venv-common, and venv-client.

1.35. Development Setup 85

https://asciinema.org/a/Q2Y3JuwqYoJjG9RB64Ovcpal2
https://asciinema.org/a/xcMY9g5iATrCchoziCbErwgbG

Backend.AI API Documentation, Release 20.03

Prepare dependent libraries

Install snappy (brew on macOS), libsnappy-dev (Debian-likes), or libsnappy-devel (RHEL-likes) system
package depending on your environment.

Prepare server-side source clones

Clone the Backend.AI source codes.

$ cd $WORKSPACE
$ git clone https://github.com/lablup/backend.ai-manager
$ git clone https://github.com/lablup/backend.ai-agent
$ git clone https://github.com/lablup/backend.ai-common

Inside each directory, install the sources as editable packages.

Note: Editable packages makes Python to apply any changes of the source code in git clones immediately when
importing the installed packages.

$ cd $WORKSPACE/backend.ai-manager
$ pyenv local venv-manager
$ pip install -U -r requirements-dev.txt

$ cd $WORKSPACE/backend.ai-agent
$ pyenv local venv-agent
$ pip install -U -r requirements-dev.txt

$ cd $WORKSPACE/backend.ai-common
$ pyenv local venv-common
$ pip install -U -r requirements-dev.txt

(Optional) Symlink backend.ai-common in the manager and agent directories to the cloned source

If you do this, your changes in the source code of the backend.ai-common directory will be reflected immediately to the
manager and agent. You should install backend.ai-common dependencies into venv-manager and venv-agent
as well, but this is already done in the previous step.

$ cd "$(pyenv prefix venv-manager)/src"
$ mv backend.ai-common backend.ai-common-backup
$ ln -s "$WORKSPACE/backend.ai-common" backend.ai-common

$ cd "$(pyenv prefix venv-agent)/src"
$ mv backend.ai-common backend.ai-common-backup
$ ln -s "$WORKSPACE/backend.ai-common" backend.ai-common

86 Chapter 1. Table of Contents

https://asciinema.org/a/SKJv19aNu9XKiCTOF0ASXibDq

Backend.AI API Documentation, Release 20.03

Initialize databases and load fixtures

Check out the Prepare Databases for Manager guide.

Prepare Kernel Images

You need to pull the kernel container images first to actually spawn compute sessions. The kernel images here must
have the tags specified in image-metadata.yml file.

$ docker pull lablup/kernel-python:3.6-debian

For the full list of publicly available kernels, check out the kernels repository.

NOTE: You need to restart your agent if you pull images after starting the agent.

Setting Linux capabilities to Python (Linux-only)

To allow Backend.AI to collect sysfs/cgroup resource usage statistics, the Python executable must have the following
Linux capabilities (to run without “root”): CAP_SYS_ADMIN, CAP_SYS_PTRACE, and CAP_DAC_OVERRIDE.
You may use the following command to set them to the current virtualenv’s Python executable.

$ sudo setcap cap_sys_ptrace,cap_sys_admin,cap_dac_override+eip $(readlink -f $(pyenv
→˓which python))

Running daemons from cloned sources

$ cd $WORKSPACE/backend.ai-manager
$./scripts/run-with-halfstack.sh python -m ai.backend.gateway.server --service-
→˓port=8081 --debug

Note that through options, PostgreSQL and Redis ports set above for development environment are used. You may
change other options to match your environment and personal configurations. (Check out -h / --help)

$ cd $WORKSPACE/backend.ai-agent
$ mkdir -p scratches # used as in-container scratch "home" directories
$./scripts/run-with-halfstack.sh python -m ai.backend.agent.server --scratch-
→˓root=`pwd`/scratches --debug --idle-timeout 30

※ The role of run-with-halfstack.sh script is to set appropriate environment variables so that the man-
ager/agent daemons use the halfstack docker containers.

Prepare client-side source clones

$ cd $WORKSPACE
$ git clone https://github.com/lablup/backend.ai-client-py

1.35. Development Setup 87

https://github.com/lablup/backend.ai-kernels
https://asciinema.org/a/dJQKPrcmIliVkCX4ldSg3rPki

Backend.AI API Documentation, Release 20.03

$ cd $WORKSPACE/backend.ai-client-py
$ pyenv local venv-client
$ pip install -U -r requirements-dev.txt

Inside venv-client, now you can use the backend.ai command for testing and debugging.

1.35.3 Verifying Installation

Write a shell script (e.g., env_local.sh) like below to easily switch the API endpoint and credentials for testing:

#! /bin/sh
export BACKEND_ENDPOINT=http://127.0.0.1:8081/
export BACKEND_ACCESS_KEY=AKIAIOSFODNN7EXAMPLE
export BACKEND_SECRET_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Load this script (e.g., source env_local.sh) before you run the client against your server-side installation.

Now you can do backend.ai ps to confirm if there are no sessions running and run the hello-world:

$ cd $WORKSPACE/backend.ai-client-py
$ source env_local.sh # check above
$ backend.ai run python -c 'print("hello")'

1.36 Adding New Kernel Images

1.36.1 Overview

Backend.AI supports running Docker containers to execute user-requested computations in a resource-constrained
and isolated environment. Most Docker container images can be imported as Backend.AI kernels with appropriate
metadata annotations.

1. Prepare a Docker image based on Ubuntu 16.04/18.04, CentOS 7.6, or Alpine 3.8.

2. Create a Dockerfile that does:

• Install the OpenSSL library in the image for the kernel runner (if not installed).

• Add metadata labels.

• Add service definition files.

• Add a jail policy file.

3. Build a derivative image using the Dockerfile.

4. Upload the image to a Docker registry to use with Backend.AI.

88 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

1.36.2 Kernel Runner

Every Backend.AI kernel should run a small daemon called “kernel runner”. It communicates with the Backend.AI
Agent running in the host via ZeroMQ, and manages user code execution and in-container service processes.

The kernel runner provides runtime-specific implementations for various code execution modes such as the query
mode and the batch mode, compatible with a number of well-known programming languages. It also manages the
process lifecycles of service-port processess.

To decouple the development and update cycles for Docker images and the Backend.AI Agent, we don’t install the
kernel runner inside images. Instead, Backend.AI Agent mounts a special “krunner” volume as /opt/backend.ai
inside containers. This volume includes a customized static build of Python. The kernel runner daemon package is
mounted as one of the site packages of this Python distribution as well. The agent also uses /opt/kernel as the
directory for mounting other self-contained single-binary utilties. This way, image authors do not have to bother with
installing Python and Backend.AI specific software. All dirty jobs like volume deployment, its content updates, and
mounting for new containers are automatically managed by Backend.AI Agent.

Since the customized Python build and binary utilities need to be built for specific Linux distributions, we only support
Docker images built on top of Alpine 3.8+, CentOS 7+, and Ubuntu 16.04+ base images. Note that these three base
distributions practically cover all commonly available Docker images.

Image Prerequisites

Currently Python does not officially support static-linking OpenSSL it depends on until bpo-38794 is resolved. There-
fore, All Docker images to be used as Backend.AI kernel images should have its own OpenSSL system packages, such
as libssl or openssl depending on the distributions.

1.36.3 Metadata Labels

Any Docker image based on Alpine 3.8+, CentOS 7+, and Ubuntu 16.04+ become a Backend.AI kernel image if you
add the following image labels:

• Required Labels

– ai.backend.kernelspec: 1 (this will be used for future versioning of the metadata specification)

– ai.backend.features: A list of constant strings indicating which Backend.AI kernel features are
available for the kernel.

* batch: Can execute user programs passed as files.

* query: Can execute user programs passed as code snippets while keeping the context across multiple
executions.

* uid-match: As of 19.03, this must be specified always.

* user-input: The query/batch mode supports interactive user inputs.

– ai.backend.resource.min.*: The minimum amount of resource to launch this kernel. At least,
you must define the CPU core (cpu) and the main memory (mem). In the memory size values, you may
use binary scale-suffixes such as m for MiB, g for GiB, etc.

– ai.backend.base-distro: Either “ubuntu16.04” or “alpine3.8”. Note that Ubuntu 18.04-based
kernels also need to use “ubuntu16.04” here.

– ai.backend.runtime-type: The type of kernel runner to use. (One of the directories in the ai.
backend.kernels namespace.)

1.36. Adding New Kernel Images 89

https://bugs.python.org/issue38794
https://github.com/lablup/backend.ai-agent/tree/master/src/ai/backend/kernel
https://github.com/lablup/backend.ai-agent/tree/master/src/ai/backend/kernel

Backend.AI API Documentation, Release 20.03

* python: This runtime is for Python-based kernels, allowing the given Python executable accessible
via the query and batch mode, also as a Jupyter kernel service.

* app: This runtime does not support code execution in the query/batch modes but just manages the ser-
vice port processes. For custom kernel images with their own service ports for their main applications,
this is the most frequently used runtime type for derivative images.

* For the full list of available runtime types, check out the lang_map variable at the ai.backend.
kernels module code

– ai.backend.runtime-path: The path to the language runtime executable.

• Optional Labels

– ai.backend.service-ports: A list of port mapping declaration strings for services supported by
the image. (See the next section for details) Backend.AI manages the host-side port mapping and network
tunneling via the API gateway automagically.

– ai.backend.envs.corecount: A comma-separated string list of environment variable names.
They are set to the number of available CPU cores to the kernel container. It allows the CPU
core restriction to be enforced to legacy parallel computation libraries. (e.g., JULIA_CPU_CORES,
OPENBLAS_NUM_THREADS)

1.36.4 Service Ports

As of Backend.AI v19.03, service ports are our preferred way to run computation workloads inside Backend.AI
kernels. It provides tunneled access to Jupyter Notebooks and other daemons running in containers.

As of Backend.AI v19.09, Backend.AI provides SSH (including SFTP and SCP) and ttyd (web-based xterm shell) as
intrinsic services for all kernels. “Intrinsic” means that image authors do not have to do anything to support/enable the
services.

As of Backend.AI v20.03, image authors may define their own service ports using service definition JSON files
installed at /etc/backend.ai/service-defs in their images.

Port Mapping Declaration

A custom service port should define two things. First, the image label ai.backend.service-ports contains
the port mapping declarations. Second, the service definition file which specifies how to start the service process.

A port mapping declaration is composed of three values: the service name, the protocol, and the container-side port
number. The label may contain multiple port mapping declarations separated by commas, like the following example:

jupyter:http:8080,tensorboard:http:6006

The name may be an non-empty arbitrary ASCII alphanumeric string. We use the kebab-case for it. The protocol may
be one of tcp, http, and pty, but currently most services use http.

Note that there are a few port numbers reserved for Backend.AI itself and intrinsic service ports. The TCP port 2000
and 2001 is reserved for the query mode, whereas 2002 and 2003 are reserved for the native pseudo-terminal mode
(stdin and stdout combined with stderr), 2200 for the intrinsic SSH service, and 7681 for the intrinsic ttyd service.

Up to Backend.AI 19.09, this was the only method to define a service port for images, and the service-specific launch
sequences were all hard-coded in the ai.backend.kernel module.

90 Chapter 1. Table of Contents

https://github.com/lablup/backend.ai-agent/blob/master/src/ai/backend/kernel/__init__.py
https://github.com/lablup/backend.ai-agent/blob/master/src/ai/backend/kernel/__init__.py

Backend.AI API Documentation, Release 20.03

Service Definition DSL

Now the image author should define the service launch sequences using a DSL (domain-specific language). The
service definitions are written as JSON files in the container’s /etc/backend.ai/service-defs directory.
The file names must be same with the name parts of the port mapping declarations.

For example, a sample service definition file for “jupyter” service (hence its filename must be /etc/backend.ai/
service-defs/jupyter.json) looks like:

{
"prestart": [

{
"action": "write_tempfile",
"args": {
"body": [
"c.NotebookApp.allow_root = True\n",
"c.NotebookApp.ip = \"0.0.0.0\"\n",
"c.NotebookApp.port = {ports[0]}\n",
"c.NotebookApp.token = \"\"\n",
"c.FileContentsManager.delete_to_trash = False\n"

]
},
"ref": "jupyter_cfg"

}
],
"command": [

"{runtime_path}",
"-m", "jupyterlab",
"--no-browser",
"--config", "{jupyter_cfg}"

],
"url_template": "http://{host}:{port}/"

}

A service definition is composed of three major fields: prestart that contains a list of prestart actions, command
as a list of template-enabled strings, and an optional url_template as a template-enabled string that defines the
URL presented to the end-user on CLI or used as the redirection target on GUI with wsproxy.

The “template-enabled” strings may have references to a contextual set of variables in curly braces. All the variable
substitution follows the Python’s brace-style formatting syntax and rules.

Available predefined variables

There are a few predefined variables as follows:

• ports: A list of TCP ports used by the service. Most services have only one port. An item in the list may be
referenced using bracket notation like {ports[0]}.

• runtime_path: A string representing the full path to the runtime, as specified in the ai.backend.
runtime-path image label.

1.36. Adding New Kernel Images 91

Backend.AI API Documentation, Release 20.03

Available prestart actions

A prestart action is composed of two mandatory fields action and args (see the table below), and an optional field
ref. The ref field defines a variable that stores the result of the action and can be referenced in later parts of the
service definition file where the arguments are marked as “template-enabled”.

Action Name Arguments Return
write_file

• body: a list of string lines (template-enabled)
• filename: a string representing the file name (template-

enabled)
• mode: an optional octal number as string, representing UNIX

file permission (default: “755”)
• append: an optional boolean. If set true, open the file in the

appending mode.

None

write_tempfile
• body: a list of string line (template-enabled)
• mode: an optional octal number as string, representing UNIX

file permission (default: “755”)

The generated file
path

mkdir
• path: the directory path (template-enabled) where parent di-

rectories are auto-created

None

run_command
• command: the command-line argument list as passed to
exec syscall (template-enabled)

A dictionary with
two fields: out
and err which con-
tain the console out-
put decoded as the
UTF-8 encoding

log
• body: a string to send as kernel log (template-enabled)
• debug: a boolean to lower the logging level to DEBUG (de-

fault is INFO)

None

Warning: run_command action should return quickly, otherwise the session creation latency will be increased.
If you need to run a background process, you must use its own options to let it daemonize or wrap as a background
shell command (["/bin/sh", "-c", "... &"]).

Interpretation of URL template

url_template field is used by the client SDK and wsproxy to fill up the actual URL presented to the end-user (or
the end-user’s web browser as the redirection target). So its template variables are not parsed when starting the service,
but they are parsed and interpolated by the clients. There are only three fixed variables: {protocol}, {host}, and
{port}.

Here is a sample service-definition that utilizes the URL template:

{
"command": [

(continues on next page)

92 Chapter 1. Table of Contents

Backend.AI API Documentation, Release 20.03

(continued from previous page)

"/opt/noVNC/utils/launch.sh",
"--vnc", "localhost:5901",
"--listen", "{ports[0]}"

],
"url_template": "{protocol}://{host}:{port}/vnc.html?host={host}&port={port}&

→˓password=backendai&autoconnect=true"
}

1.36.5 Jail Policy

(TODO: jail policy syntax and interpretation)

Adding Custom Jail Policy

To write a new policy implementation, extend the jail policy interface in Go. Ebmed it inside your jail build. Please
give a look to existing jail policies as good references.

1.36.6 Example: An Ubuntu-based Kernel

FROM ubuntu:16.04

Add commands for image customization
RUN apt-get install ...

Backend.AI specifics
RUN apt-get install libssl
LABEL ai.backend.kernelspec=1 \

ai.backend.resource.min.cpu=1 \
ai.backend.resource.min.mem=256m \
ai.backend.envs.corecount="OPENBLAS_NUM_THREADS,OMP_NUM_THREADS,NPROC" \
ai.backend.features="batch query uid-match user-input" \
ai.backend.base-distro="ubuntu16.04" \
ai.backend.runtime-type="python" \
ai.backend.runtime-path="/usr/local/bin/python" \
ai.backend.service-ports="jupyter:http:8080"

COPY service-defs/*.json /etc/backend.ai/service-defs/
COPY policy.yml /etc/backend.ai/jail/policy.yml

1.36.7 Implementation details

The query mode I/O protocol

The input is a ZeroMQ’s multipart message with two payloads. The first payload should contain a unique identifier for
the code snippet (usually a hash of it), but currently it is ignored (reserved for future caching implementations). The
second payload should contain a UTF-8 encoded source code string.

The reply is a ZeroMQ’s multipart message with a single payload, containing a UTF-8 encoded string of the following
JSON object:

1.36. Adding New Kernel Images 93

https://github.com/lablup/backend.ai-jail

Backend.AI API Documentation, Release 20.03

{
"stdout": "hello world!",
"stderr": "oops!",
"exceptions": [

["exception-name", ["arg1", "arg2"], false, null]
],
"media": [

["image/png", "data:image/base64,...."]
],
"options": {

"upload_output_files": true
}

}

Each item in exceptions is an array composed of four items: exception name, exception arguments (optional), a
boolean indicating if the exception is raised outside the user code (mostly false), and a traceback string (optional).

Each item in media is an array of two items: MIME-type and the data string. Specific formats are defined and handled
by the Backend.AI Media module.

The options field may present optionally. If upload_output_files is true (default), then the agent uploads
the files generated by user code in the working directory (/home/work) to AWS S3 bucket and make their URLs
available in the front-end.

The pseudo-terminal mode protocol

If you want to allow users to have real-time interactions with your kernel using web-based terminals, you should
implement the PTY mode as well. A good example is our “git” kernel runner.

The key concept is separation of the “outer” daemon and the “inner” target program (e.g., a shell). The outer daemon
should wrap the inner program inside a pseudo-tty. As the outer daemon is completely hidden in terminal interaction
by the end-users, the programming language may differ from the inner program. The challenge is that you need to
implement piping of ZeroMQ sockets from/to pseudo-tty file descriptors. It is up to you how you implement the outer
daemon, but if you choose Python for it, we recommend to use asyncio or similar event loop libraries such as tornado
and Twisted to mulitplex sockets and file descriptors for both input/output directions. When piping the messages,
the outer daemon should not apply any specific transformation; it should send and receive all raw data/control byte
sequences transparently because the front-end (e.g., terminal.js) is responsible for interpreting them. Currently we use
PUB/SUB ZeroMQ socket types but this may change later.

Optionally, you may run the query-mode loop side-by-side. For example, our git kernel supports terminal resizing and
pinging commands as the query-mode inputs. There is no fixed specification for such commands yet, but the current
CodeOnWeb uses the followings:

• %resize <rows> <cols>: resize the pseudo-tty’s terminal to fit with the web terminal element in user
browsers.

• %ping: just a no-op command to prevent kernel idle timeouts while the web terminal is open in user browsers.

A best practice (not mandatory but recommended) for PTY mode kernels is to automatically respawn the inner program
if it terminates (e.g., the user has exited the shell) so that the users are not locked in a “blank screen” terminal.

94 Chapter 1. Table of Contents

https://github.com/lablup/backend.ai-kernel-runner/blob/master/src/ai/backend/kernel/git/__init__.py

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

95

	Table of Contents
	Key Concepts
	API Overview
	FAQ
	Quickstart Guides
	Supplementary Guides
	Configure Autoscaling
	Upgrading from 20.03 to 20.09
	Migrating from the Docker Hub to cr.backend.ai
	Client SDK Libraries and Tools
	API and Document Conventions
	Authentication
	Rate Limiting
	JSON Object References
	Introduction
	Session Management
	Service Ports (aka Service Proxies)
	Code Execution (Streaming)
	Code Execution (Query Mode)
	Code Execution (Batch Mode)
	Event Monitoring
	Virtual Folders
	Resource Presets
	Introduction
	Agent Monitoring
	Scaling Group Management
	Domain Management
	Group Management
	User Management
	Image Management
	Compute Session Monitoring
	Virtual Folder Management
	KeyPair Management
	KeyPair Resource Policy Management
	Resource Preset Management
	Development Setup
	Adding New Kernel Images

	Indices and tables

