
Backend.AI Documentation
Release 1.0

Joongi Kim

Aug 08, 2023

User Manuals

1 FAQ 3

2 Table of Contents 5

3 Indices and tables 43

i

ii

Backend.AI Documentation, Release 1.0

Latest API version: v3.20170615 (beta)

Backend.AI is a hassle-free backend for AI programming and service. It runs arbitrary user codes safely in resource-
constrained environments, using Docker and our own sandbox wrapper.

Backend.AI supports various programming languages and runtimes, such as Python 2/3, R, PHP, C/C++, Java,
Javascript, Julia, Octave, Haskell, Lua and NodeJS, as well as AI-oriented libraries such as TensorFlow, Keras, Caffe,
and MXNet.

User Manuals 1

Backend.AI Documentation, Release 1.0

2 User Manuals

CHAPTER 1

FAQ

1.1 vs. Notebooks

Product Role Problem and Solution
Apache Zeppelin, Jupyter
Notebook

Notebook-style document + code
front-ends

Insecure host resource sharing

Backend.AI Pluggable back-end to any front-
ends

Built for multi-tenancy: scalable and better
isolation

1.2 vs. Orchestration Frameworks

Product Target Value
Amazon ECS, Kuber-
netes

Long-running service dae-
mons

Laod balancing, fault tolerance, incremental deploy-
ment

Backend.AI Stateful compute sessions Low-cost high-density computation
Amazon Lambda Stateless, light-weight func-

tions
Serverless, zero-management

3

Backend.AI Documentation, Release 1.0

1.3 vs. Big-data and AI Frameworks

Product Role Problem and Solution
TensorFlow, Apache Spark,
Apache Hive

Computation runtime Difficult to install, configure, and operate

Amazon ML, Azure ML, GCP
ML

Managed MLaaS Still complicated for scientists, too restrictive for en-
gineers

Backend.AI Host of computation
runtimes

Pre-configured, versioned, reproducible, customiz-
able (open-source)

(All product names and trade-marks are the properties of their respective owners.)

4 Chapter 1. FAQ

CHAPTER 2

Table of Contents

2.1 API Overview

Backend.AI API v3 consists of two parts: User APIs and Admin APIs.

Warning: APIv3 breaks backward compatibility a lot, and we will primarily support v3 after June 2017. Please
upgrade your clients immediately.

2.1.1 API KeyPair Registration

For managed, best-experience service, you may register to our cloud version of Backend.AI API service instead of
installing it to your own machines. Simply create an account at cloud.sorna.io and generate a new API keypair. You
may also use social accounts for log-ins such as Twitter, Facebook, and GitHub.

An API keypair is composed of a 20-characters access key (AKIA...) and a 40-characters secret key, in a similar
form to AWS access keys.

Currently, the service is BETA: it is free of charge but each user is limited to have only one keypair and have up to 5
concurrent kernel sessions for a given keypair. Keep you eyes on further announcements for upgraded paid plans.

2.1.2 Accessing Admin APIs

The admin APIs require a special keypair with the admin privilege:

• The public cloud service (api.sorna.io): It currently does not offer any admin privileges to the end-users,
as its functionality is already available via our management console at cloud.sorna.io.

• On-premise installation: You will get an auto-generated admin keypair during installation.

5

https://cloud.sorna.io
https://cloud.sorna.io

Backend.AI Documentation, Release 1.0

2.2 Python Client Library

We provide an official Python client library that abstracts the low-level HTTP REST APIs via a function-based inter-
face.

2.2.1 Requirements

Python 3.6 or higher is required. You can download its official installer from python.org, or use a 3rd-party pack-
age/version manager such as homebrew, miniconda, or pyenv. It works on Linux, macOS, and Windows.

2.2.2 Installation

We recommend to create a virtual environment for isolated, unobtrusive installation of the library.

$ python3 -m venv venv-sorna
$ source venv-sorna/bin/activate
(venv-sorna) $

Then install the client library from PyPI.

(venv-sorna) $ pip install -U pip wheel setuptools
(venv-sorna) $ pip install sorna-client

2.2.3 Configuration

Set your API keypair as environment variables:

(venv-sorna) $ export SORNA_ACCESS_KEY=AKIA...
(venv-sorna) $ export SORNA_SECRET_KEY=...

The run Python in the virtual environment and check if your credentials are valid:

>>> from sorna.request import Request
>>> request = Request('GET', '/authorize', {'echo': 'test'})
>>> request.sign()
>>> response = request.send()
>>> response.status
200
>>> response.json()
{'authorized': 'yes', 'echo': 'test'}

2.3 API and Document Conventions

2.3.1 HTTP Methods

We use the standard HTTP/1.1 methods (RFC-2616), such as GET, POST, PUT, PATCH and DELETE, with some
additions from WebDAV (RFC-3253) such as REPORT method to send JSON objects in request bodies with GET
semantics.

6 Chapter 2. Table of Contents

https://www.python.org/downloads/
http://brew.sh/index_ko.html
http://conda.pydata.org/miniconda.html
https://github.com/yyuu/pyenv
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc3253

Backend.AI Documentation, Release 1.0

If your client runs under a restrictive environment that only allows a subset of above methods, you may use the uni-
versal POST method with an extra HTTP header like X-Method-Override: REPORT, so that the Backend.AI
gateway can recognize the intended HTTP method.

2.3.2 Parameters in URI and JSON Request Body

The parameters with colon prefixes (e.g., :id) are part of the URI path and must be encoded using a proper URI-
compatible encoding schemes such as encodeURIComponent(value) in Javascript and urllib.parse.
quote(value, safe='~()*!.\'') in Python 3+.

Other parameters should be set as a key-value pair of the JSON object in the HTTP request body. The API server
accepts both UTF-8 encoded bytes and standard-compliant Unicode-escaped strings in the body.

2.3.3 HTTP Status Codes and JSON Response Body

The API responses always contain a root JSON object, regardless of success or failures.

For successful responses (HTTP status 2xx), the root object has a varying set of key-value pairs depending on the API.

For failures (HTTP status 4xx/5xx), the root object contains at least two keys: type which uniquely identifies the
failure reason as an URI and title for human-readable error messages. Some failures may return extra structured
information as additional key-value pairs. We use RFC 7807-style problem detail description returned in JSON of the
response body.

2.3.4 JSON Field Notation

Dot-separated field names means a nested object. If the field name is a pure integer, it means a list item.

Example Meaning
a The attribute a of the root object. (e.g., 123 at {"a": 123})
a.b The attribute b of the object a on the root. (e.g., 456 at {"a": {"b": 456}})
a.0 An item in the list a on the root. 0 means an arbitrary array index, not the specific item at

index zero. (e.g., any of 13, 57, 24, and 68 at {"a": [13, 57, 24, 68]})
a.0.b The attribute b of an item in the list a on the root. (e.g., any of 1, 2, and 3 at {"a":

[{"b": 1}, {"b": 2}, {"b": 3}]})

2.3.5 JSON Value Types

This documentation uses a type annotation style similar to Python’s typing module, but with minor intuitive differences
such as lower-cased generic type names and wildcard as asterisk * instead of Any.

The common types are array (JSON array), object (JSON object), int (integer-only subset of JSON number),
str (JSON string), and bool (JSON true or false). tuple and list are aliases to array. Optional values
may be omitted or set to null.

We also define several custom types:

2.3. API and Document Conventions 7

https://tools.ietf.org/html/rfc7807
https://docs.python.org/3/library/typing.html

Backend.AI Documentation, Release 1.0

Type Description
decimal Fractional numbers represented as str not to loose precision. (e.g., to express money

amounts)
slug Similar to str, but the values should contain only alpha-numeric characters, hyphens,

and underscores. Also, hyphens and underscores should have at least one alphanumeric
neighbor as well as cannot become the prefix or suffix.

datetime ISO-8601 timestamps in str, e.g., "YYY-mm-ddTHH:MM:SS.ffffff+HH:MM". It
may include an optional timezone information. If timezone is not included, the value is
assumed to be UTC. The sub-seconds parts has at most 6 digits (micro-seconds).

enum[*] Only allows a fixed/predefined set of possible values in the given parametrized type.

2.3.6 API Versioning

A version string of the Backend.AI API uses two parts: a major revision (prefixed with v) and minor release dates
after a dot following the major revision. For example, v23.20250101 indicates a 23rd major revision with a minor
release at January 1st in 2025.

We keep backward compatibility between minor releases within the same major version. Therefore, all API query
URLs are prefixed with the major revision, such as /v2/kernel/create. Minor releases may introduce new
parameters and response fields but no URL changes. Accessing unsupported major revision returns HTTP 404 Not
Found.

A client must specify the API version in the HTTP request header named X-BackendAI-Version. To check the
latest minor release date of a specific major revision, try a GET query to the URL with only the major revision part
(e.g., /v2). The API server will return a JSON string in the response body containing the full version. When querying
the API version, you do not have to specify the authorization header and the rate-limiting is enforced per the client IP
address. Check out more details about Authentication and Rate Limiting.

Example version check response body:

{
"version": "v2.20170315"

}

2.4 Authentication

2.4.1 Access Tokens and Secret Key

To make requests to the API server, a client needs to get a pair of an access token and a secret key as sepcified
in /gsg/registration. The server uses access tokens to identify each client and secret keys to verify integrity of API
requests as well as to authenticate clients.

Warning: For security reasons (to avoid exposition of your API access key and secret keys to arbitrary Internet
users), we highly recommend to setup a server-side proxy to our API service if you are building a public-facing
front-end service using Backend.AI.

For local deployments, you may create a master dummy pair in the configuration (TODO).

8 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

2.4.2 Common Structure of API Requests

HTTP Headers Values
Method GET / REPORT / POST / PUT / PATCH / DELETE
Content-Type Always should be application/json
Authorization Signature information generated as the section Signing API Requests describes.
Date The date/time of the request formatted in RFC 8022 or ISO 8601. If no timezone is

specified, UTC is assumed. The deviation with the server-side clock must be within
15-minutes.

X-BackendAI-Date Same as Date. May be omitted if Date is present.
X-BackendAI-Version vX.yyymmdd where X is the major version and yyyymmdd is the minor release date

of the specified API version. (e.g., 20160915)
X-BackendAI-Client-TokenAn optional, client-generated random string to allow the server to distinguish repeated

duplicate requests. It is important to keep idempotent semantics with multiple retries
for intermittent failures. (Not implemented yet)

Body JSON-encoded request parameters

2.4.3 Common Structure of API Responses

HTTP Headers Values
Status code API-specific HTTP-standard status codes. Responses commonly used throughout all

APIs include 200, 201, 2014, 400, 401, 403, 404, 429, and 500, but not limited to.
Content-Type application/json and its variants (e.g., application/problem+json for

errors)
Link Web link headers specified as in RFC 5988. Only optionally used when returning a

collection of objects.
X-RateLimit-* The rate-limiting information (see Rate Limiting).
Body JSON-encoded results

2.4.4 Signing API Requests

Each API request must be signed with a signature. First, the client should generate a signing key derived from its API
secret key and a string to sign by canonicalizing the HTTP request.

Generating a signing key

Here is a Python code that derives the signing key from the secret key. The key is nestedly signed against the current
date (without time) and the API endpoint address.

import hashlib, hmac
from datetime import datetime

SECRET_KEY = b'abc...'

def sign(key, msg):
return hmac.new(key, msg, hashlib.sha256).digest()

def get_sign_key():
t = datetime.utcnow()

(continues on next page)

2.4. Authentication 9

https://tools.ietf.org/html/rfc5988

Backend.AI Documentation, Release 1.0

(continued from previous page)

k1 = sign(SECRET_KEY, t.strftime('%Y%m%d').encode('utf8'))
k2 = sign(k1, b'your.sorna.api.endpoint')
return k2

Generating a string to sign

The string to sign is generated from the following request-related values:

• HTTP Method (uppercase)

• URI including query strings

• The value of Date (or X-BackendAI-Date if Date is not present) formatted in ISO 8601
(YYYYmmddTHHMMSSZ) using the UTC timezone.

• The canonicalized header/value pair of Host

• The canonicalized header/value pair of Content-Type

• The canonicalized header/value pair of X-BackendAI-Version

• The hex-encoded hash value of body as-is. The hash function must be same to the one given in the
Authorization header (e.g., SHA256).

To generate a string to sign, the client should join the above values using the newline ("\n", ASCII 10) character.
All non-ASCII strings must be encoded with UTF-8. To canonicalize a pair of HTTP header/value, first trim all
leading/trailing whitespace characters ("\n", "\r", " ", "\t"; or ASCII 10, 13, 32, 9) of its value, and join the
lowercased header name and the value with a single colon (":", ASCII 58) character.

The success example in Example Requests and Responses makes a string to sign as follows (where the newlines are
"\n"):

GET
/v2
20160930T01:23:45Z
host:your.sorna.api.endpoint
content-type:application/json
x-sorna-version:v2.20170215
e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

In this example, the hash value e3b0c4... is generated from an empty string using the SHA256 hash function since
there is no body for GET requests.

Then, the client should calculate the signature using the derived signing key and the generated string with the hash
function, as follows:

import hashlib, hmac

str_to_sign = 'GET\n/v2...'
sign_key = get_sign_key() # see "Generating a signing key"
m = hmac.new(sign_key, str_to_sign.encode('utf8'), hashlib.sha256)
signature = m.hexdigest()

Attaching the signature

Finally, the client now should construct the following HTTP Authorization header:

10 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

Authorization: BackendAI signMethod=HMAC-SHA256, credential=<access-key>:<signature>

2.4.5 Example Requests and Responses

For the examples here, we use a dummy access key and secret key:

• Example access key: AKIAIOSFODNN7EXAMPLE

• Example secret key: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Success example for checking the latest API version

GET /v2 HTTP/1.1
Host: your.sorna.api.endpoint
Date: 20160930T01:23:45Z
Authorization: BackendAI signMethod=HMAC-SHA256,
→˓credential=AKIAIOSFODNN7EXAMPLE:022ae894b4ecce097bea6eca9a97c41cd17e8aff545800cd696112cc387059cf
Content-Type: application/json
X-BackendAI-Version: v2.20170215

HTTP/1.1 200 OK
Content-Type: application/json
Content-Language: en
Content-Length: 31
X-RateLimit-Limit: 2000
X-RateLimit-Remaining: 1999
X-RateLimit-Reset: 897065

{
"version": "v2.20170215"

}

Failure example with a missing authorization header

GET /v2/kernel/create HTTP/1.1
Host: your.sorna.api.endpoint
Content-Type: application/json
X-BackendAI-Date: 20160930T01:23:45Z
X-BackendAI-Version: v2.20170215

HTTP/1.1 401 Unauthorized
Content-Type: application/problem+json
Content-Language: en
Content-Length: 139
X-RateLimit-Limit: 2000
X-RateLimit-Remaining: 1998
X-RateLimit-Reset: 834821

{
"type": "https://sorna.io/problems/unauthorized",
"title": "Unauthorized access",
"detail": "Authorization header is missing."

}

2.4. Authentication 11

Backend.AI Documentation, Release 1.0

2.5 Rate Limiting

The API server imposes a rate limit to prevent clients from overloading the server. The limit is applied to the last N
minutes at ANY moment (N is 15 minutes by default).

For public non-authorized APIs such as version checks, the server uses the client’s IP address seen by the server to
impose rate limits. Due to this, please keep in mind that large-scale NAT-based deployments may encounter the rate
limits sooner than expected. For authorized APIs, it uses the access key in the authorization header to impose rate
limits. The rate limit includes both all successful and failed requests.

Upon a valid request, the HTTP response contains the following header fields to help the clients flow-control their
requests.

HTTP Headers Values
X-RateLimit-Limit The maximum allowed number of requests during the rate-limit window.
X-RateLimit-RemainingThe number of further allowed requests left for the moment.
X-RateLimit-Window The constant value representing the window size in seconds. (e.g., 900 means 15

minutes)
Changed in version v3.20170615: Deprecated X-RateLimit-Reset and transi-
tional X-Retry-After as we have implemented a rolling counter that measures
last 15 minutes API call counts at any moment.

When the limit is exceeded, further API calls will get HTTP 429 “Too Many Requests”. If the client seems to be
DDoS-ing, the server may block the client forever without prior notice.

2.6 JSON Object References

2.6.1 Paging Query Object

It describes how many items to fetch for object listing APIs. If index exceeds the number of pages calculated by the
server, an empty list is returned.

Key Type Description
size int The number of items per page. If set zero or this object is entirely omitted, all items are

returned and index is ignored.
index int The page number to show, zero-based.

2.6.2 Paging Info Object

It contains the paging information based on the paging query object in the request.

Key Type Description
pages int The number of total pages.
count int The number of all items.

12 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

2.6.3 KeyPair Item Object

Key Type Description
accessKey slugThe access key part.
isActive boolIndicates if the keypair is active or not.
totalQueriesint The number of queries done via this keypair. It may have a stale value.
created datetimeThe timestamp when the keypair was created.

2.6.4 KeyPair Properties Object

Key Type Description
isActive boolIndicates if the keypair is activated or not. If not activated, all authentication using the

keypair returns 401 Unauthorized. When changed from true to false, existing running
kernel sessions continue to run but any requests to create new kernel sessions are refused.
(default: true)

concurrecy int The maximum number of concurrent kernel sessions allowed for this keypair. (default: 5)
ML.
clusterSize

int Sets the number of instances clustered together when launching new machine learning ker-
nel sessions. (default: 1)

ML.
instanceMemory

int
(MiB)

Sets the memory limit of each instance in the cluster launched for new machine learning
kernel sessions. (default: 8)

The enterprise edition offers the following additional properties:

Key Type Description
cost.
automatic

boolIf set true, enables automatic cost optimization (BETA). With supported kernel types, it
automatically suspends or resize the kernel sessions not to exceed the configured cost limit
per day. (default: false)

cost.
dailyLimit

str The string representation of money amount as decimals. The currency is fixed to USD.
(default: "50.00")

2.6.5 Batch Execution Query Object

Key Type Description
build str The bash command to build the main program from the given uploaded files.

If this field is not present, an empty string or null, it skips the build step.
If this field is a constant string "*", it will use a default build script provided by the kernel.
For example, the C kernel’s default Makefile adds all C source files under the working
directory and copmiles them into ./main executable, with commonly used C/link flags:
"-pthread -lm -lrt -ldl".

exec str The bash command to execute the main program.
If this is not present, an empty string, or null, the server only performs the build step and
options.buildLog is assumed to be true (the given value is ignored).

Note: A client can distinguish whether the current output is from the build phase or the execution phase by whether
it has received build-finished status or not.

2.6. JSON Object References 13

Backend.AI Documentation, Release 1.0

Note: All shell commands are by default executed under /home/work. The common environment is:

TERM=xterm
LANG=C.UTF-8
SHELL=/bin/bash
USER=work
HOME=/home/work

but individual kernels may have additional environment settings.

Warning: The shell does NOT have access to sudo or the root privilege. Though, some kernels may allow
installation of language-specific packages in the user directory.

Also, your build script and the main program is executed inside Backend.AI Jail, meaning that some system calls
are blocked by our policy. Since ptrace syscall is blocked, you cannot use native debuggers such as gdb.

This limitation, however, is subject to change in the future.

Example:

{
"build": "gcc -Wall main.c -o main -lrt -lz",
"exec": "./main"

}

14 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

2.6.6 Execution Result Object

Key Type Description
runId str The user-provided run identifier. If the user has NOT provided it, this will be set by the API

server upon the first execute API call. In that case, the client should use it for the subsequent
execute API calls during the same run.

status enum[str]One of "continued", "waiting-input", "finished", or
"build-finished". See more details at Code Execution Model.

exitCode int
|
null

The exit code of the last process. This field has a valid value only when the status is
"finished" or "build-finished". Otherwise it is set to null.
For batch-mode kernels and query-mode kernels without global context support,
exitCode is the return code of the last executed child process in the kernel. In the ex-
ecution step of a batch mode run, this is always 127 (a UNIX shell common practice for
“command not found”) when the build step has failed.
For query-mode kernels with global context support, this value is always zero, regardless
of whether the user code has caused an exception or not.
A negative value (which cannot happen with normal process termination) indicates a
Backend.AI-side error.

console

list[

→˓tuple[

→˓

→˓

→˓enum[str],
→˓

→˓*

→˓]
]

Contains a list of console output items. Each item is a pair of the item type (enum[str])
and its value (*). See more details at Handling Console Output.

options objectAn object containing extra display options. If there is no options indicated by the kernel,
this field is null. When result.status is "waiting-input", it has a boolean
field is_password so that you could use different types of text boxes for user inputs.

2.6. JSON Object References 15

Backend.AI Documentation, Release 1.0

2.6.7 Kernel Session Item Object

Key Type Description
id slugThe kernel session ID.
type str The kernel type (typically the name of runtime or programming lanauge).
status enum[str]One of "preparing", "building”, "running", "restarting", "resizing",

"success", "error", "terminating", "suspended".
statusInfo str An optional message related to the current status. (e.g., error information)
age int

(msec)
The time elapsed since the kernel has started.

execTime int
(msec)

The time taken for execution. Excludes the time taken for being suspended, restarting, and
resizing.

numQueriesExecutedint The total number of queries executed after start-up.
memoryUsed int

(MiB)
The amount of memory currently used (sum of all resident-set size across instances). It may
show a stale value.

cpuUtil int
(%)

The current CPU utilization (sum of all used cores across instances, hence may exceed
100%). It may show a stale value.
Changed in version v3.20170615: This had been separated into multiple credit-based fields,
but that was never implemented properly. We has changed it to represent more intuitive
value.

config objectCreation Config Object specified when created.

2.6.8 Creation Config Object

Key Type Description
environ objectA dictionary object specifying additional environment variables. The values must be

strings.
mounts list[str]An optional list of the name of virtual folders that belongs to the current API key. These

virtual folders are mounted under /home/work. For example, if the virtual folder name
is abc, you can access it on /home/work/abc.
If the name contains a colon in the middle, the second part of the string indicates the alias
location in the kernel’s file system which is relative to /home/work.
You may mount up to 5 folders for each kernel session.

clusterSize int The number of instances bundled for this session.
instanceMemoryint

(MiB)
The maximum memory allowed per instance. The value is capped by the per-kernel image
limit. Additional charges may apply on the public API service.

instanceCoresint The number of CPU cores. The value is capped by the per-kernel image limit. Additional
charges may apply on the public API service.

instanceGPUsfloatThe fraction of GPU devices (1.0 means a whole device). The value is capped by the per-
kernel image limit. Additional charges may apply on the public API service.

16 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

2.6.9 Virtual Folder Item Object

Key Type Description
name str The human readable name set when created.
id slugThe unique ID of the folder. Use this when making API requests referring this folder.
linked boolIndicates if this folder is linked to an external service. (enterprise edition only)
usedSize int

(MiB)
The sum of the size of files in this folder.

numFiles int The number of files in this folder.
maxSize int

(MiB)
The maximum size of this folder.

created datetimeThe date and time when the folder is created.

2.7 Introduction

Backend.AI User API is for running instant compute sessions at scale in clouds or on-premise clusters.

2.7.1 Code Execution Model

The core of the user API is the execute call which allows clients to execute user-provided codes in isolated compute
sessions (aka kernels). Each session is managed by a kernel runtime, whose implementation is language-specific. A
runtime is often a containerized daemon that interacts with the Backend.AI agent via our internal ZeroMQ protocol. In
some cases, kernel runtimes may be just proxies to other code execution services instead of actual executor daemons.

Inside each compute session, a client may perform multiple runs. Each run is for executing different code snippets
(the query mode) or different sets of source files (the batch mode). The client often has to call the execute API
multiple times to finish a single run. It is completely legal to mix query-mode runs and batch-mode runs inside the
same session, given that the kernel runtime supports both modes.

To distinguish different runs which may be overlapped, the client must provide the same run ID to all execute calls
during a single run. The run ID should be unique for each run and can be an arbitrary random string. If the run ID is
not provided by the client at the first execute call of a run, the API server will assign a random one and inform it to the
client via the first response. Normally, if two or more runs are overlapped, they are processed in a FIFO order using
an internal queue. But they may be processed in parallel if the kernel runtime supports parallel processing. Note that
the API server may raise a timeout error and cancel the run if the waiting time exceeds a certain limit.

In the query mode, usually the runtime context (e.g., global variables) is preserved for next subsequent runs, but this
is not guaranteed by the API itself—it’s up to the kernel runtime implementation.

Fig. 2.1: The state diagram of a “run” with the execute API.

The execute API accepts 4 arguments: mode, runId, code, and options (opts). It returns an Execution Result
Object encoded as JSON.

Depending on the value of status field in the returned Execution Result Object, the client must perform another
subsequent execute call with appropriate arguments or stop. Fig. 2.1 shows all possible states and transitions between
them via the status field value.

If status is "finished", the client should stop.

2.7. Introduction 17

Backend.AI Documentation, Release 1.0

If status is "continued", the client should make another execute API call with the code field set to an empty
string and the mode field set to "continue". Continuation happens when the user code runs longer than a few
seconds to allow the client to show its progress, or when it requires extra step to finish the run cycle.

If status is "build-finished" (this happens at the batch-mode only), the client should make the same con-
tinuation call. All outputs prior to this status return are from the build program and all future outputs are from the
executed program built. Note that even when the exitCode value is non-zero (failed), the client must continue once
again to complete the run cycle.

If status is "waiting-input", you should make another execute API call with the code field set to the user-
input text and the mode field set to "input". This happens when the user code calls interactive input() functions.
Until you send the user input, the current run is blocked. You may use modal dialogs or other input forms (e.g., HTML
input) to retrieve user inputs. When the server receives the user input, the kernel’s input() returns the given value.
Note that each kernel runtime may provide different ways to trigger this interactive input cycle or may not provide at
all.

When each call returns, the console field in the Execution Result Object have the console logs captured since the
last previous call. Check out the following section for details.

2.7.2 Handling Console Output

The console output consists of a list of tuple pairs of item type and item data. The item type is one of "stdout",
"stderr", "media", "html", or "log".

When the item type is "stdout" or "stderr", the item data is the standard I/O stream outputs as (non-escaped)
UTF-8 string. The total length of either streams is limited to 524,288 Unicode characters per each execute API call;
all excessive outputs are truncated. The stderr often includes language-specific tracebacks of (unhandled) exceptions
or errors occurred in the user code. If the user code generates a mixture of stdout and stderr, the print ordering is
preserved and each contiguous block of stdout/stderr becomes a separate item in the console output list so that the
client user can reconstruct the same console output by sequentially rendering the items.

Note: The text in the stdout/stderr item may contain arbitrary terminal control sequences such as ANSI color codes
and cursor/line manipulations. It is the user’s job to strip out them or implement some sort of terminal emulation.

Tip: Since the console texts are not escaped, the client user should take care of rendering and escaping de-
pending on the UI implementation. For example, use <pre> element, replace newlines with
, or apply
white-space: pre CSS style when rendering as HTML. An easy way to do escape the text safely is to use
insertAdjacentText() DOM API.

When the item type is "media", the item data is a pair of the MIME type and the content data. If the MIME type
is text-based (e.g., "text/plain") or XML-based (e.g., "image/svg+xml"), the content is just a string that
represent the content. Otherwise, the data is encoded as a data URI format (RFC 2397). You may use backend.ai-
media library to handle this field in Javascript on web-browsers.

When the item type is "html", the item data is a partial HTML document string, such as a table to show tabular
data. If you are implementing a web-based front-end, you may use it directly to the standard DOM API, for instance,
consoleElem.insertAdjacentHTML(value, "beforeend").

When the item type is "log", the item data is a 4-tuple of the log level, the timestamp in the ISO 8601 format, the
logger name and the log message string. The log level may be one of "debug", "info", "warning", "error",
or "fatal". You may use different colors/formatting by the log level when printing the log message. Not every
kernel runtime supports this rich logging facility.

18 Chapter 2. Table of Contents

https://github.com/lablup/backend.ai-media
https://github.com/lablup/backend.ai-media

Backend.AI Documentation, Release 1.0

2.8 Kernel Management

Here are the API calls to create and manage compute sessions.

2.8.1 Creating Kernel Session

• URI: /v2/kernel/ (/v2/kernel/create also works for legacy)

• Method: POST

Creates a kernel session if there is no existing (running) kernel with the same clientSessionToken. If there is
an existing session and it has the same lang, no new session is created but the API returns successfully. In this case,
config options are ignored and the created field in the response is set false (otherwise it’s true). If there is
an existing session but with a different lang, then the API server returns an error.

Parameters

Parameter Type Description
lang str The kernel runtime type, usually in the form of the language name and its version tag

connected with a colon. (e.g., "python:latest")
clientSessionTokenstr Client-provided session token which can contain ASCII alphabets, numbers, and hyphens

in the middle. The length must be between 4 to 64 characters inclusively. It is useful for
aliasing the session with a human-friendly name. There can exist only one running session
with the same token at a time, but you can reuse the same token if previous session has been
terminated.

config objectAn optional Creation Config Object to specify extra kernel configuration.

Example:

{
"lang": "python:3.6",
"clientSessionToken": "EXAMPLE:STRING",
"config": {
"clusterSize": 1,
"instanceMemory": 51240,
"environ": {

"MYCONFIG": "XXX",
},
"mounts": [

"mydata",
"mypkgs:.local/lib/python3.6/site-packages"

],
}

}

Response

HTTP Status Code Description
201 Created The kernel is successfully created.
406 Not acceptable The requested resource limits exceed the server’s own limits.

2.8. Kernel Management 19

Backend.AI Documentation, Release 1.0

Fields Type Values
kernelId slugThe kernel ID used for later API calls.
created boolTrue if the kernel is freshly created.

Example:

{
"kernelId": "TSSJT2Z4SnmQhxjWMnJljg",
"created": true

}

2.8.2 Getting Kernel Information

• URI: /v2/kernel/:id

• Method: GET

Retrieves information about a kernel session. For performance reasons, the returned information may not be real-time;
usually they are updated every a few seconds in the server-side.

Parameters

Parameter Type Description
:id slugThe kernel ID.

Response

HTTP Status Code Description
200 OK The information is successfully returned.
404 Not Found There is no such kernel.

Fields Type Values
item objectKernel Session Item Object.

2.8.3 Destroying Kernel Session

• URI: /v2/kernel/:id

• Method: DELETE

Terminates a kernel session.

Parameters

Parameter Type Description
:id slugThe kernel ID.

20 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

Response

HTTP Status Code Description
204 No Content The kernel is successfully destroyed.
404 Not Found There is no such kernel.

2.8.4 Restarting Kernel Session

• URI: /v2/kernel/:id

• Method: PATCH

Restarts a kernel session. The idle time of the kernel will be reset, but other properties such as the age and CPU credit
will continue to accumulate. All global states such as global variables and modules imports are also reset.

Parameters

Parameter Type Description
:id slugThe kernel ID.

Response

HTTP Status Code Description
204 No Content The kernel is successfully restarted.
404 Not Found There is no such kernel.

2.9 Code Execution (Query Mode)

2.9.1 Executing Snippet

• URI: /v2/kernel/:id

• Method: POST

Executes a snippet of user code using the specified kernel session. Each execution request to a same kernel session may
have side-effects to subsequent executions. For instance, setting a global variable in a request and reading the variable
in another request is completely legal. It is the job of the user (or the front-end) to gaurantee the correct execution
order of multiple interdependent requests. When the kernel session is terminated or restarted, all such volatile states
vanish.

2.9. Code Execution (Query Mode) 21

Backend.AI Documentation, Release 1.0

Parameters

Parameter Type Description
:id slugThe kernel ID.
mode str A constant string "query".
code str A string of user-written code. All non-ASCII data must be encoded in UTF-8 or any format

acceptable by the kernel.
runId str A string of client-side unique identifier for this particular run. For more details about the

concept of a run, see Code Execution Model. If not given, the API server will assign a
random one in the first response and the client must use it for the same run afterwards.

Example:

{
"type": "query",
"code": "print('Hello, world!')",
"runId": "5facbf2f2697c1b7"

}

Response

HTTP Status Code Description
200 OK The kernel has responded with the execution result. The response body contains a

JSON object as described below.

Fields Type Values
result objectExecution Result Object.

Note: Even when the user code raises exceptions, such queries are treated as successful execution. i.e., The failure of
this API means that our API subsystem had errors, not the user codes.

Warning: If the user code tries to breach the system, causes crashs (e.g., segmentation fault), or runs too long
(timeout), the kernel session is automatically terminated. In such cases, you will get incomplete console logs
with "finished" status earlier than expected. Depending on situation, the result.stderr may also contain
specific error information.

Here we demonstrate a few example returns when various Python codes are executed.

Example: Simple return.

print("Hello, world!")

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "finished",
"console": [

(continues on next page)

22 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

(continued from previous page)

["stdout", "Hello, world!\n"]
],
"options": null

}
}

Example: Runtime error.

a = 123
print('what happens now?')
a = a / 0

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "finished",
"console": [

["stdout", "what happens now?\n"],
["stderr", "Traceback (most recent call last):\n File \"<input>\", line 3, in

→˓<module>\nZeroDivisionError: division by zero"],
],
"options": null

}
}

Example: Multimedia output.

Media outputs are also mixed with other console outputs according to their execution order.

import matplotlib.pyplot as plt
a = [1,2]
b = [3,4]
print('plotting simple line graph')
plt.plot(a, b)
plt.show()
print('done')

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "finished",
"console": [

["stdout", "plotting simple line graph\n"],
["media", ["image/svg+xml", "<?xml version=\"1.0\" ..."]],
["stdout", "done\n"]

],
"options": null

}
}

Example: Continuation results.

import time
for i in range(5):

print(f"Tick {i+1}")
time.sleep(1)

print("done")

2.9. Code Execution (Query Mode) 23

Backend.AI Documentation, Release 1.0

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "continued",
"console": [

["stdout", "Tick 1\nTick 2\n"]
],
"options": null

}
}

Here you should make another API query with the empty code field.

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "continued",
"console": [

["stdout", "Tick 3\nTick 4\n"]
],
"options": null

}
}

Again.

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "finished",
"console": [

["stdout", "Tick 5\ndone\n"],
],
"options": null

}
}

Example: User input.

print("What is your name?")
name = input(">> ")
print(f"Hello, {name}!")

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "waiting-input",
"console": [

["stdout", "What is your name?\n>> "]
],
"options": {

"is_password": false
}

}
}

You should make another API query with the code field filled with the user input.

24 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

{
"result": {
"runId": "5facbf2f2697c1b7",
"status": "finished",
"console": [

["stdout", "Hello, Lablup!\n"]
],
"options": null

}
}

2.9.2 Auto-completion

• URI: /v2/kernel/:id/complete

• Method: POST

Parameters

Parameter Type Description
:id slugThe kernel ID.
code str A string containing the code until the current cursor position.
options.
post

str A string containing the code after the current cursor position.

options.
line

str A string containing the content of the current line.

options.
row

int An integer indicating the line number (0-based) of the cursor.

options.
col

int An integer indicating the column number (0-based) in the current line of the cursor.

Example:

{
"code": "pri",
"options": {
"post": "\nprint(\"world\")\n",
"line": "pri",
"row": 0,
"col": 3

}
}

Response

HTTP Status Code Description
200 OK The kernel has responded with the execution result. The response body contains a

JSON object as described below.

2.9. Code Execution (Query Mode) 25

Backend.AI Documentation, Release 1.0

Fields Type Values
result list[str]An ordered list containing the possible auto-completion matches as strings. This may be

empty if the current kernel does not implement auto-completion or no matches have been
found.
Selecting a match and merging it into the code text are up to the front-end implementation.

Example:

{
"result": [
"print",
"printf"

]
}

2.9.3 Interrupt

• URI: /v2/kernel/:id/interrupt

• Method: POST

Parameters

Parameter Type Description
:id slugThe kernel ID.

Response

HTTP Status Code Description
204 No Content Sent the interrupt signal to the kernel. Note that this does not guarantee the effective-

ness of the interruption.

2.10 Code Exectuion and Monitoring (Streaming Mode)

The streaming mode provides a direct web-based terminal access to kernel containers.

2.10.1 Terminal Emulation

• URI: /v2/stream/kernel/:id/pty

• Method: GET upgraded to WebSockets

This endpoint provides a duplex continuous stream of JSON objects via the native WebSocket. Although WebSocket
supports binary streams, we currently rely on TEXT messages only conveying JSON payloads to avoid quirks in typed
array support in Javascript across different browsers.

26 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

Note: We do not provide any legacy WebSocket emulation interfaces such as socket.io or SockJS. You need to set up
your own proxy if you want to support legacy browser users.

Parameters

Parameter Type Description
:id slugThe kernel ID.

Client-to-Server Protocol

The endpoint accepts the following four types of input messages.

Standard input stream

All ASCII (and UTF-8) inputs must be encoded as base64 strings. The characters may include control characters as
well.

{
"type": "stdin",
"chars": "<base64-encoded-raw-characters>"

}

Terminal resize

Set the terminal size to the given number of rows and columns. You should calculate them by yourself.

For instance, for web-browsers, you may do a simple math by measuring the width and height of a temporarily created,
invisible HTML element with the (monospace) font styles same to the terminal container element that contains only a
single ASCII character.

{
"type": "resize",
"rows": 25,
"cols": 80

}

Ping

Use this to keep the kernel alive (preventing it from auto-terminated by idle timeouts) by sending pings periodically
while the user-side browser is open.

{
"type": "ping",

}

2.10. Code Exectuion and Monitoring (Streaming Mode) 27

Backend.AI Documentation, Release 1.0

Restart

Use this to restart the kernel without affecting the working directory and usage counts. Useful when your foreground
terminal program does not respond for whatever reasons.

{
"type": "restart",

}

Server-to-Client Protocol

Standard output/error stream

Since the terminal is an output device, all stdout/stderr outputs are merged into a single stream as we see in real
terminals. This means there is no way to distinguish stdout and stderr in the client-side, unless your kernel applies
some special formatting to distinguish them (e.g., make all stderr otuputs red).

The terminal output is compatible with xterm (including 256-color support).

{
"type": "out",
"data": "<base64-encoded-raw-characters>"

}

Server-side errors

{
"type": "error",
"data": "<human-readable-message>"

}

2.10.2 Executing Snippet via WebSocket

• URI: /v2/stream/kernel/:id/ws

• Method: GET upgraded to WebSockets

This API function is read-only — meaning that you cannot send any data to this URI.

Warning: This API is not implemented yet.

Note: There is timeout enforced in the server-side but you may need to adjust defaults in your client-side WebSocket
library.

28 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

Parameters

Parameter Type Description
:id slugThe kernel ID.

Responses

Field Name Value
name The name of an event as a string. May be one of: "terminated", "restarted"
reason The reason for the event as a canonicalized string such as "out-of-memory",

"bad-action", and "execution-timeout".

Example:

{
"name": "terminated",
"reason": "execution-timeout"

}

2.10.3 Rate limiting

The streaming mode uses the same rate limiting policy as other APIs use. The limitation only applies to all client-
generated messages including the initial WebSocket connection handshake but except stdin type messages such as
individual keystrokes in the terminal. Server-generated messages are also exempted from rate limiting.

2.10.4 Usage metrics

The streaming mode uses the same method that the query mode uses to measure the usage metrics such as the memory
and CPU time used.

2.11 Code Execution (Batch Mode)

Some kernels provide the batch mode, which offers an explicit build step required for multi-module programs or
compiled programming languages. In this mode, you first upload files in prior to execution.

2.11.1 Uploading files

• URI: /v2/kernel/:id/upload

• Method: POST

Parameters

Upload files to the kernel session. You may upload multiple files at once using multi-part form-data encoding in the
request body (RFC 1867/2388). The uploaded files are placed under /home/work directory (which is the home
directory for all kernels by default), and existing files are always overwritten. If the filename has a directory part,

2.11. Code Execution (Batch Mode) 29

Backend.AI Documentation, Release 1.0

non-existing directories will be auto-created. The path may be either absolute or relative, but only sub-directories
under /home/work is allowed to be created.

Hint: This API is for uploading frequently-changing source files in prior to batch-mode execution. All files uploaded
via this API is deleted when the kernel terminates. Use virtual folders to store and access larger, persistent, static data
and library files for your codes.

Warning: You cannot upload files to mounted virtual folders using this API directly. However, you may
copy/move the generated files to virtual folders in your build script or the main program for later uses.

There are several limits on this API:

The maximum size of each file 1 MiB
The number of files per upload request 20

Response

HTTP Status Code Description
200 OK The kernel has responded with the execution result. The response body contains a

JSON object as described below.
400 Bad Request Returned when one of the uploaded file exeeds the size limit or there are too many

files.

2.11.2 Executing with Build Step

• URI: /v2/kernel/:id

• Method: POST

Parameters

Parameter Type Description
:id slugThe kernel ID.
mode enum[str]A constant string "batch".
code str Must be an empty string "".
runId str A string of client-side unique identifier for this particular run. For more details about the

concept of a run, see Code Execution Model. If not given, the API server will assign a
random one in the first response and the client must use it for the same run afterwards.

options objectBatch Execution Query Object.

Example:

{
"type": "batch",
"options": "{batch-execution-query-object}",
"runId": "af9185c5fb0eacb2"

}

30 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

Response

HTTP Status Code Description
200 OK The kernel has responded with the execution result. The response body contains a

JSON object as described below.

Fields Type Values
result objectExecution Result Object.

2.12 Virtual Folders

Virtual folders provide access to shared, persistent, and reused files across different kernel sessions.

You can mount virtual folders when creating new kernel sessions, and use them like a plain directory on the local
filesystem. Of course, reads/writes to virtual folder contents may have degraded performance compared to the main
scratch directory (usually /home/work in most kernels) as internally it uses a networked file system.

Note: Currently the total size of a virtual folder is limited to 1 GiB and the number of files is limited to 1,000 files
during public beta, but these limits are subject to change in the future.

2.12.1 Listing Virtual Folders

Retruns the list of virtual folders created by the current keypair.

• URI: /v2/folders

• Method: GET

Parameters

Parameter Type Description
paging objectPaging Query Object.

Response

HTTP Status Code Description
200 OK Success.

Fields Type Values
paging objectPaging Info Object.
items list[object]A list of Virtual Folder Item Object.

2.12. Virtual Folders 31

Backend.AI Documentation, Release 1.0

2.12.2 Creating a virtual folder

• URI: /v2/folders/create

• Method: POST

Creates a virtual folder associated with the current API key.

Parameters

Parameter Type Description
tagName str The human-readable name of the virtual folder.

Example:

{
"tagName": "My Data",

}

Response

HTTP Status Code Description
201 Created The kernel is successfully created.
400 Bad Request The name is malformed or duplicate with your existing virtual folders.
406 Not acceptable You have exceeded internal limits of virtual folders. (e.g., the maximum number of

folders you can have.)

Fields Type Values
folderId slugThe unique folder ID used for later API calls.

Example:

{
"folderId": "oyU2WOYRYmjCGuKoSkiJ7H2rlN4"

}

2.12.3 Getting Virtual Folder Information

• URI: /v2/folders/:id

• Method: GET

Retrieves information about a virtual folder. For performance reasons, the returned information may not be real-time;
usually they are updated every a few seconds in the server-side.

Parameters

Parameter Type Description
:id slugThe virtual folder ID.

32 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

Response

HTTP Status Code Description
200 OK The information is successfully returned.
404 Not Found There is no such folder.

Fields Type Values
item objectVirtual Folder Item Object.

2.12.4 Deleting Virtual Folder

• URI: /v2/folders/:id

• Method: DELETE

This immediately deletes all contents of the given virtual folder and makes the folder unavailable for future mounts.

Danger: If there are running kernels that have mounted the deleted virtual folder, those kernels are likely to break!

Warning: There is NO way to get back the contents once this API is invoked.

Parameters

Parameter Description
:id The virtual folder ID.

Response

HTTP Status Code Description
204 No Content The folder is successfully destroyed.
404 Not Found There is no such folder.

2.13 Introduction

Backend.AI’s Admin API is for developing in-house management consoles.

There are two modes of operation:

1. Full admin access: you can query all information of all users. It requires a privileged keypair.

2. Restricted owner access: you can query only your own information. The server processes your request in this
mode if you use your own plain keypair.

2.13. Introduction 33

Backend.AI Documentation, Release 1.0

Warning: The Admin API only accepts authenticated requests.

Tip: To test and debug with the Admin API easily, try the proxy mode of the official Python client. It provides an
insecure (non-SSL, non-authenticated) local HTTP proxy where all the required authorization headers are attached
from the client configuration. Using this you do not have to add any custom header configurations to your favorite API
development tools.

2.13.1 Basics of GraphQL

The Admin API uses a single GraphQL endpoint for both queries and mutations.

https://api.sorna.io/v3/admin/graphql

For more information about GraphQL concepts and syntax, please visit the following site(s):

• GraphQL official website

HTTP Request Convention

A client must use the POST HTTP method. The server accepts a JSON-encoded body with an object containing two
fields: query and variables, pretty much like other GraphQL server implementations.

Warning: Currently the API gateway does not support schema discovery which is often used by API development
tools such as Insomnia and GraphiQL.

Field Naming Convention

We do NOT automatically camel-case our field names. All field names follow the underscore style, which is common
in the Python world as our server-side framework uses Python.

Pagination Convention

GraphQL itself does not enforce how to pass pagination information when querying multiple objects of the same type.

We use a de-facto standard pagination convention as described below:

TODO

Custom Scalar Types

• UUID: A hexademically formatted (8-4-4-4-12 alphanumeric characters connected via single hyphens) UUID
values represented as String

• DateTime: An ISO-8601 formatted date-time value represented as String

34 Chapter 2. Table of Contents

https://pypi.python.org/pypi/backend.ai-client
http://graphql.org/

Backend.AI Documentation, Release 1.0

Authentication

The admin API shares the same authentication method of the user API.

Versioning

As we use GraphQL, there is no explicit versioning. You can use any version prefix in the endpoint URL, from v1 to
vN where N is the latest major API version.

2.14 KeyPair Management

2.14.1 Full Admin

Query Schema

type KeyPair {
access_key: String
secret_key: String
is_active: Boolean
is_admin: Boolean
resource_policy: String
created_at: DateTime
last_used: DateTime
concurrency_limit: Int
concurrency_used: Int
rate_limit: Int
num_queries: Int
vfolders: [VirtualFolder]
compute_sessions(status: String): [ComputeSession]

}

type root {
...
keypair(access_key: String): KeyPair
keypairs(user_id: Int!, is_active: Boolean): [KeyPair]

}

Mutation Schema

input KeyPairInput {
is_active: Boolean
resource_policy: String
concurrency_limit: Int
rate_limit: Int

}

type CreateKeyPair {
ok: Boolean
msg: String
keypair: KeyPair

}

(continues on next page)

2.14. KeyPair Management 35

Backend.AI Documentation, Release 1.0

(continued from previous page)

type ModifyKeyPair {
ok: Boolean
msg: String

}

type DeleteKeyPair {
ok: Boolean
msg: String

}

type root {
...
create_keypair(user_id: Int!, props: KeyPairInput!): CreateKeyPair
modify_keypair(access_key: String!, props: KeyPairInput!): ModifyKeyPair
delete_keypair(access_key: String!): DeleteKeyPair

}

2.14.2 Restricted Owner Access

Query Schema

It shares the same KeyPair type, but you cannot use user_id argument in the root query because the client can
only query the keypair that is being used to make this API query. Also the returned value is always a single object.

type root {
...
keypair(): KeyPair!

}

Mutation Schema

There is no mutations available.

2.15 Compute Session Monitoring

2.15.1 Full Admin

Query Schema

type ComputeSession {
sess_id: String
id: UUID
status: String
status_info: String
created_at: DateTime
terminated_at: DateTime
agent: String
container_id: String

(continues on next page)

36 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

(continued from previous page)

mem_slot: Int
cpu_slot: Int
gpu_slot: Int
num_queries: Int
cpu_used: Int
max_mem_bytes: Int
cur_mem_bytes: Int
net_rx_bytes: Int
net_tx_bytes: Int
io_read_bytes: Int
io_write_bytes: Int
lang: String
workers(status: String): [ComputeWorker]

}

type ComputeWorker {
sess_id: String
id: UUID
status: String
status_info: String
created_at: DateTime
terminated_at: DateTime
agent: String
container_id: String
mem_slot: Int
cpu_slot: Int
gpu_slot: Int
num_queries: Int
cpu_used: Int
max_mem_bytes: Int
cur_mem_bytes: Int
net_rx_bytes: Int
net_tx_bytes: Int
io_read_bytes: Int
io_write_bytes: Int

}

type root {
...
compute_sessions(access_key: String, status: String): [ComputeSession]
compute_workers(sess_id: String!, status: String): [ComputeWorker]

}

2.15.2 Restricted Owner Access

Query Schema

It shares the same ComputeSession and ComputeWorker type, but with a slightly different root query type:

type root {
...
compute_sessions(status: String): [ComputeSession]
compute_workers(sess_id: String!, status: String): [ComputeWorker]

}

2.15. Compute Session Monitoring 37

Backend.AI Documentation, Release 1.0

2.16 Virtual Folder Management

2.16.1 Full Admin

Query Schema

type VirtualFolder {
id: UUID
host: String
name: String
max_files: Int
max_size: Int
created_at: DateTime
last_used: DateTime
num_files: Int
cur_size: Int

}

type rootQuery {
...
vfolders(access_key: String): [VirtualFolder]

}

2.16.2 Restricted Owner Access

Query Schema

It shares the same VirtualFolder type, but you cannot use access_key argument in the root query.

type root {
...
vfolders(): [VirtualFolder]

}

2.17 Statistics

2.17.1 Full Admin

Query Schema

TODO

2.17.2 Restricted Owner Access

Query Schema

TODO

38 Chapter 2. Table of Contents

Backend.AI Documentation, Release 1.0

2.18 Adding New REPL Kernels

2.18.1 Architecture Overview

Inside containers, each kernel is a simple daemon process that accepts user code snippets and replies with its execution
results via TCP-based ZeroMQ connections. The rationale to use ZeroMQ is: 1) it is message-based; we do not have
to concern the message boundaries and encodings, 2) it automatically reconnects when the connection is lost due
to network failures or packet losses, 3) it is one of the most universally supported networking library in various
programming languages.

A kernel should offer the query mode and/or the PTY mode. The TCP port 2001 is reserved for the query mode whereas
2002 and 2003 are reserved for the PTY mode (stdin and stdout combined with stderr).

2.18.2 Ingredients of Kernel Images

A kernel is a Docker image with the following format:

• Dockerfile

– WORKDIR /home/work: this path is used to mount an external directory so that the agent can access
files generated by user codes.

– CMD must be set to the main program.

– Required Labels

* io.sorna.maxcores: N (the number of CPU cores recommended for this kernel)

* io.sorna.maxmem: M (the memory size in a human-readable bytes recommended for this kernel,
128m (128 MBytes) for example)

* io.sorna.timeout: T (the maximum seconds allowed to execute a single query)

* Above limits are used as default settings by Backend.AI Agent, but the agents may enforce lower
limits due to the service policy. Backend.AI Gateway may refer these information for load balancing
and scheduling.

* io.sorna.mode: query, pty, or query+pty

– Optional Labels

* io.sorna.envs.corecount: a comma-separated string of environment variable names which
will be set to the number of assigned CPU cores by the agent. (e.g., JULIA_CPU_CORES,
OPENBLAS_NUM_THREADS)

* io.sorna.nvidia.enabled: yes or no (if yes, Backend.AI Agent attaches an NVIDIA CUDA
GPU device with a driver volume. You must use nvidia-docker images as base of your Dockerfile.)

* io.sorna.extra_volumes: a comma-separated string of extra volume mounts (volume name
and path inside container separated by a colon), such as deep learning sample data sets (e.g.,
sample-data:/home/work/samples,extra-data:/home/work/extra). Note that
we allow only read-only mounts. The available list of extra volumes depends on your Backend.AI
Agent setup; there is no standard or predefined ones. If you want to add a new one, use docker
volume commands. When designated volumes do not exist in the agent’s host, the agent silently
skips mounting them.

* io.sorna.features: a comma-separated string keywords indicating available features of this
kernel.

2.18. Adding New REPL Kernels 39

https://github.com/NVIDIA/nvidia-docker

Backend.AI Documentation, Release 1.0

Keyword Feature
media.images Generates images (PNG, JPG, and SVG) without uploading into AWS

S3.
media.svgplot Generates plots in SVG.
media.drawing Generates animated vector graphics which can be rendered by sorna-

media Javascript library
media.audio Generates audio signal streams. (not implemented)

• The main program that implements the query mode and/or the PTY mode (see below).

– We strongly recommend to create a normal user instead of using root for the main program.

– The main program should be wrapped with jail, like:

#! /bin/bash
exec /home/sorna/jail default `which lua` /home/sorna/run.lua

The first argument to jail is the policy name and the second and laters are the absolute path of the main
program with its arguments. To customize the jail policy, see below.

– jail and intra-jail must be copied into the kernel image.

• Other auxilliary files used in Dockerfile or the main program. (e.g., Python and package installation scripts)

2.18.3 Writing Query Mode Kernels

Most kernels fall into this category. You just write a simple blocking loop that receives a input code message and send
a output result message via a ZeroMQ REP socket listening on port 2001. All complicated stuffs such as multiplexing
multiple user requests and container management is done by Backend.AI Agent.

The input is a ZeroMQ’s multipart message with two payloads. The first payload should contain a unique identifier for
the code snippet (usually a hash of it), but currently it is ignored (reserved for future caching implementations). The
second payload should contain a UTF-8 encoded source code string.

The reply is a ZeroMQ’s multipart message with a single payload, containing a UTF-8 encoded string of the following
JSON object:

{
"stdout": "hello world!",
"stderr": "oops!",
"exceptions": [

["exception-name", ["arg1", "arg2"], false, null]
],
"media": [

["image/png", "data:image/base64,...."]
],
"options": {

"upload_output_files": true
}

}

Each item in exceptions is an array composed of four items: exception name, exception arguments (optional), a
boolean indicating if the exception is raised outside the user code (mostly false), and a traceback string (optional).

Each item in media is an array of two items: MIME-type and the data string. Specific formats are defined and handled
by the Backend.AI Media module.

40 Chapter 2. Table of Contents

https://github.com/lablup/sorna-media
https://github.com/lablup/sorna-media
https://github.com/lablup/sorna-repl/tree/master/bin

Backend.AI Documentation, Release 1.0

The options field may present optionally. If upload_output_files is true (default), then the agent uploads
the files generated by user code in the working directory (/home/work) to AWS S3 bucket and make their URLs
available in the front-end.

2.18.4 Writing PTY Mode Kernels

If you want to allow users to have real-time interactions with your kernel using web-based terminals, you should
implement the PTY mode as well. A good example is our “git” kernel.

The key concept is separation of the “outer” daemon and the “inner” target program (e.g., a shell). The outer daemon
should wrap the inner program inside a pseudo-tty. As the outer daemon is completely hidden in terminal interaction
by the end-users, the programming language may differ from the inner program. The challenge is that you need to
implement piping of ZeroMQ sockets from/to pseudo-tty file descriptors. It is up to you how you implement the outer
daemon, but if you choose Python for it, we recommend to use asyncio or similar event loop libraries such as tornado
and Twisted to mulitplex sockets and file descriptors for both input/output directions. When piping the messages,
the outer daemon should not apply any specific transformation; it should send and receive all raw data/control byte
sequences transparently because the front-end (e.g., terminal.js) is responsible for interpreting them. Currently we use
PUB/SUB ZeroMQ socket types but this may change later.

Optionally, you may run the query-mode loop side-by-side. For example, our git kernel supports terminal resizing and
pinging commands as the query-mode inputs. There is no fixed specification for such commands yet, but the current
CodeOnWeb uses the followings:

• %resize <rows> <cols>: resize the pseudo-tty’s terminal to fit with the web terminal element in user
browsers.

• %ping: just a no-op command to prevent kernel idle timeouts while the web terminal is open in user browsers.

A best practice (not mandatory but recommended) for PTY mode kernels is to automatically respawn the inner program
if it terminates (e.g., the user has exited the shell) so that the users are not locked in a “blank screen” terminal.

2.18.5 Writing Custom Jail Policies

Implement the jail policy interface in Go and ebmed it inside your jail build. Please give a look to existing jail policies
as good references.

2.18. Adding New REPL Kernels 41

https://github.com/lablup/sorna-repl/blob/master/git/run.py
https://github.com/lablup/sorna-repl/blob/master/jail/policy/interfaces.go

Backend.AI Documentation, Release 1.0

42 Chapter 2. Table of Contents

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

43

	FAQ
	Table of Contents
	Indices and tables

